English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 93244/123616 (75%)
Visitors : 27802865      Online Users : 558
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/131638


    Title: 機器學習識別古典及量子自旋模型相態
    Identifying phases of classical and quantum spin models with machine learning
    Authors: 林恆毅
    Lin, Heng-Yi
    Contributors: 林瑜琤
    Lin, Yu-Cheng
    林恆毅
    Lin, Heng-Yi
    Keywords: 深度學習
    多層感知器
    捲積神經網路
    三角量子反鐵磁
    二維古典易辛模型
    deep learning
    multilayer perceptron
    convolutional neural network
    triangular quantum Ising antiferromagnet
    two-dimensional classical Ising model
    Date: 2020
    Issue Date: 2020-09-02 12:17:00 (UTC+8)
    Abstract: 三角易辛(Ising)反鐵磁在絕對零度因幾何挫折性而不具磁性。有趣的是,具量子效應的橫向磁場可誘發易辛反鐵磁零溫基態之有序性,產生具Z6 對稱破缺的時鐘態;這個零溫有序態可由更強的橫向磁場或有限溫度破壞。在絕對零度,一量子臨界點區分弱場下的有序時鐘態與強場下的無序順磁態。而在有限溫度,一Kosterlitz-Thouless相態區隔了低溫的時鐘態及高溫的順磁態。我們以量子蒙地卡羅方法針對許多不同溫度值及橫場值產生自旋組態,接著藉機器學習技術的多層感知器和捲積神經網路訓練機器辨識自旋組態與相態的關係,再以更多的自旋組態使神經網路識別其對應的相態。上述機器學習方法可頗精確辨識古典易辛模型的簡單相態,但對我們主要考慮的三角反鐵磁相態卻無法呈現良好的辨識力。
    The triangular Ising antiferromagnet has no magnetic order down to zero temperature due to geometrical frustration. Interestingly, a weak transverse field, introducing quantum fluctuations, can induce magnetic order in the triangular antiferromagnet at zero temperature, resulting in the clock phase with a broken Z6 symmetry; this ordered clock phase can be destroyed by a strong transverse field or at finite temperature. At T=0, there is a quantum critical point separating the clock phase in weak fields and a paramagnetic phase in strong fields; at finite temperature, the antiferromagnet exhibits an extended Kosterlitz-Thouless (KT) phase intervening between the clock and paramagnetic phases. We generate spin configurations of the triangular antiferromagnet at different temperatures and transverse fields by quantum Monte Carlo (QMC) simulations. We attempt to use supervised machine learning techniques via multilayer perceptrons and convolutional neural networks to classify the phases of the antiferromagnetic system, solely based on spin configurations sampled with QMC. We find that the neural network models perform the classification task with a 70% accuracy for the triangular quantum antiferromagnet, while successfully distinguishing the classical Ising states with more than 90% accuracy.
    Reference: [1] G. H. Wannier, Phys. Rev. 79, 357 (1950).
    [2] Y. Jiang and T. Emig, Phys. Rev. B 73,104452 (2006).
    [3] S. V. Isakov and R. Moessner, Physical Review B 68 (2003).
    [4] M. Žukovič, L. Mižišin, and A. Bobák, Acta Physica Polonica A 126, 40 (2014).
    [5] 張鎮宇, 三角晶格易辛反鐵磁之量子相變, Master’s thesis, 國立政治大學,
    2017.
    [6] A. W. Sandvik and J. Kurkijärvi, Phys. Rev. B 43, 5950 (1991).
    [7] R. G. Melko, Stochastic Series Expansion Quantum Monte Carlo, pages 185–
    206, Springer, Berlin, Heidelberg, 2013.
    [8] G. Carleo et al., Rev. Mod. Phys. 91, 045002 (2019).
    [9] P. Mehta et al., Physics Reports 810, 1 (2019).
    [10] TensorFlow, https://www.tensorflow.org/.
    [11] Keras, https://keras.io/.
    [12] L. Bottou, Stochastic gradient descent tricks, in Neural networks: Tricks of
    the trade, pages 421–436, Springer, 2012.
    [13] D. P. Kingma and J. Ba, arXiv: 1412.6980 (2014).
    [14] D. E. Rumelhart and D. Zipser, Cognitive science 9, 75 (1985).
    31
    [15] M. A. Nielsen, Neural networks and deep learning, Determination press San
    Francisco, CA, 2015.
    [16] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
    J. Mach. Learn. Res. 15, 1929 (2014).
    [17] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training
    by reducing internal covariate shift, in Proceedings of the 32nd International
    Conference on International Conference on Machine Learning - Volume
    37, ICML’15, page 448, JMLR.org, 2015.
    [18] S. Santurkar, D. Tsipras, A. Ilyas, and A. Mądry, How does batch normalization
    help optimization?, in Proceedings of the 32nd International Conference on
    Neural Information Processing Systems, NIPS’18, page 2488, Red Hook, NY,
    USA, 2018, Curran Associates Inc.
    [19] P. Mehta and D. J. Schwab, arXiv 1410.3831 (2014).
    [20] DeepLearning series: Convolutional Neural Networks,
    https://mc.ai/deeplearningseriesconvolutionalneuralnetworks/.
    Description: 碩士
    國立政治大學
    應用物理研究所
    106755007
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0106755007
    Data Type: thesis
    DOI: 10.6814/NCCU202001705
    Appears in Collections:[應用物理研究所 ] 學位論文

    Files in This Item:

    File Description SizeFormat
    500701.pdf4530KbAdobe PDF13View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback