English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 109948/140897 (78%)
Visitors : 46103706      Online Users : 1361
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 期刊論文 >  Item 140.119/135147
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/135147


    Title: Architectural sustainability and efficiency of enhanced waterproof coating from utilization of waterborne poly (Siloxane-Imide-Urethane) copolymers on roof surfaces
    Authors: 洪為璽
    Hung, Wei-His
    Wang, Wen-Hsin
    Hsu, Yao-Tang
    Contributors: 資管系
    Keywords: waterproofing;sustainable building materials;environmental aging;siloxane;polyurethane;imide;copolymer
    Date: 2020-05
    Issue Date: 2021-05-26 10:41:13 (UTC+8)
    Abstract: According to Taiwan’s Ministry of the Interior, from 2017 to 2019, more than 12% of house-purchase disputes were due to water leakage caused by frequent tropical rains, which have long troubled engineers. The thermal stability resistance, water resistance, and ultraviolet resistance of existing polyurethane formulations have been limited by environmental aging. Thus, the lifespan of commercial PU-coated resins (typical PU) for the waterproofing of roof surfaces is merely two to three years. Accordingly, this study proposed the introduction of siloxane and imide groups to produce waterborne poly(urethane-siloxane-imide) (Si-imide-WPU) copolymers to improve the resistance of environmental aging in typical PU. The waterproof coating resin made of Si-imide-WPU copolymers was environmentally friendly, safe to use, and free of organic solvents. The results showed that the optimal Si-imide-WPU-2 sample in the study made improvements on the defects of polyurethane (PU) including its thermal properties, mechanical properties, environmental resistance, and lifespan which could be extended up to 5.4 years. Consequently, the studied Si-imide-WPU copolymers could reduce material waste while enhancing the sustainability and efficiency of the architecture.
    Relation: Sustainability, Vol.12, No.11, pp.1-17
    Data Type: article
    DOI 連結: https://doi.org/10.3390/su12114411
    DOI: 10.3390/su12114411
    Appears in Collections:[資訊管理學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    179.pdf1905KbAdobe PDF2148View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback