政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/135795
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 109952/140903 (78%)
Visitors : 46051837      Online Users : 882
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/135795


    Title: Processing Framework for Landslide Detection Based on Synthetic Aperture Radar (SAR) Intensity-Image Analysis
    Authors: 林士淵
    Lin, Shih-Yuan
    Lin, Cheng-Wei
    Gasselt, Stephan van
    Contributors: 地政系
    Keywords: remote sensing; synthetic aperture radar; landslides; natural hazards
    Date: 2021-02
    Issue Date: 2021-06-16 14:50:14 (UTC+8)
    Abstract: We present an object-based image analysis (OBIA) approach to identify temporal changes in radar-intensity images and to locate land-cover changes caused by mass-wasting processes at small to large scales, such as landslides. Our approach is based upon change detection in SAR intensity images that remain in their original imaging coordinate system rather than being georeferenced and map-projected, in order to reduce accumulation of filtering artifacts and other unwanted effects that would deteriorate the detection efficiency. Intensity images in their native slant-range coordinate frame allow for a consistent level of detection of land-cover changes. By analyzing intensity images, a much faster response can be achieved and images can be processed as soon as they are made publicly available. In this study, OBIA was introduced to systematically and semiautomatically detect landslides in image pairs with an overall accuracy of at least 60% when compared to in-situ landslide inventory data. In this process, the OBIA feature extraction component was supported by derived data from a polarimetric decomposition as well as by texture indices derived from the original image data. The results shown here indicate that most of the landslide events could be detected when compared to a closer visual inspection and to established inventories, and that the method could therefore be considered as a robust detection tool. Significant deviations are caused by the limited geometric resolution when compared to field data and by an additional detection of stream-related sediment redeposition in our approach. This overdetection, however, turns out to be potentially beneficial for assessing the risk situation after landslide events.
    Relation: Remote Sensing, Vol.13, No.4, 644
    Data Type: article
    DOI link: https://doi.org/10.3390/rs13040644
    DOI: 10.3390/rs13040644
    Appears in Collections:[Department of Land Economics] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    80.pdf23620KbAdobe PDF2201View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback