English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 112721/143689 (78%)
Visitors : 49598185      Online Users : 460
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/136972


    Title: Bi1.7+xSb0.3-xTe2.7Se0.3+y wt%Te x=0、0.05、0.1 y=15、20、25 熱電性質研究
    The Thermoelectric Properties Study of Bi1.7+xSb0.3-xTe2.7Se0.3+y wt%Te x=0、0.05、0.1 y=15、20、25
    Authors: 李岷錡
    Chi, Li Min
    Contributors: 陳洋元
    Chen,Yang Yuan
    李岷錡
    Li Min Chi
    Keywords: 熱電材料
    化學參雜
    布里奇曼法
    火花電漿燒結
    碲化鉍
    Thermoelectric material
    Chemical doping
    Bridgman-Stockbarger Method
    Spark plasma sintering
    Bismuth Telluride
    Date: 2021
    Issue Date: 2021-09-02 16:58:12 (UTC+8)
    Abstract: 隨著21世紀的來臨,能源議題逐年被重視,許多新興材料以及相關研究課題正如火如荼進行中,其中之一的熱電材料,著眼於其無須透過機械裝置的耦合而可達到熱能與電能的直接互相轉換,近20年來不斷地被研究,其中Bi2Te3 因為其ZT最大值落在300~500 K之間,對於室溫範圍具有應用潛力,因此本論文之研究課題以Bi1.7Sb0.3Te.27Se0.3為基礎尋找具高熱電轉換效率之n型合金塊材,透過Sb及過量的Te參雜量的調制(Sb: 0.05-0.1, Te: 15-30wt%),尋找最佳熱電轉換效率之熱電材料,並研究不同的製程方式對ZT值的影響,分別使用布里奇曼法(Bridgman-Stockbarger Method)、高溫燒結(Furnace melting)、火花電漿燒結 (SPS)製備樣品,研究不同參雜比例對熱電性質的影響,製備之樣品以X光繞射儀(XRD)分析結晶相,X-光螢光分析儀 (XRF)確認元素成分比例,ZEM-3分析導電係數以與席貝克係數,並探討以上物理量、材料特性與不同長晶方法及成分之間的關係,以高溫燒結製備之Bi1.75Sb0.25Te2.7Se0.3樣品為參考,其材料優質係數ZT約為0.55, 而Bi1.75Sb0.25Te2.7Se0.3+15wt%Te使用布里奇曼法在750度每小時5 mm的長晶速率所製備之塊才其ZT則最高可達0.84,而火花電漿燒結系統在380度50 MPa的條件下所得到的材料其ZT值則達0.8,相較於Bi1.75Sb0.25Te2.7Se0.3之樣品均有顯著提升,添加Sb與Te確實可有效提升zT值,然而當Te添加量過多,zT值不升反降,研究結果顯示Te添加量不應超過20wt%,。
    At the start of the 21st century, energy issues have been paid attention year by year, as a potential solution for saving energy, thermoelectric materials have attracted a lot of study in the past 20 years. Among thermoelectric materials, Bi2Te3, because its maximum ZT value falls between 300 and 500 K makes it a high application potential near the room temperature range. Therefore, we are interested in if the Bi2Te3-based materials can be tuned to even improved advance. This work focused on the n-type materials Bi1.7Sb0.3Te2.7Se0.3, looking for n-type alloy bulk materials with high thermoelectric conversion efficiency by doping level tuning of Sb and Te (Sb: 0.05-0.1, Te: 15-30wt%). Meanwhile, three synthesize methods Bridgeman-Stockbarger Method, Furnace melting, spark plasma sintering (SPS) are employed to study the influence of the method on the ZT values and effects on thermoelectric properties. The prepared samples are analyzed by X-ray diffractometer (XRD) and X-ray fluorescence analyzer (XRF) for identification of crystalline phases and the atomic ratio. The ZEM-3 and LFA are employed to study the electrical conductivity and Seebeck coefficient, and thermal conductivity, respectively. Taking the Bi1.75Sb0.25Te2.7Se0.3 sample that is prepared by the pre-melting method as a reference, the material figure of merit ZT is about 0.55. While the maxima ZTs of Bi1.75Sb0.25Te2.7Se0.3+15wt%Te that prepped by the Bridgman method (growth rate of 5 mm/hr at 750 degrees) and by the spark plasma sintering system (at 380 degrees 50 MPa) are reached up to 0.84 and 0.8, respectively. Which are significantly higher than that of the Bi1.75Sb0.25Te2.7Se0.3. However, the zT suppressed at high tuning level, which indicates that the Te tuning shall not higher than 20wt%.
    Reference: [1]謝逸聆,為邁向2025非核家園目標 推動新能源政策
    上網日期,105-09-17
    檢自:https://www.ey.gov.tw/Page/9277F759E41CCD91/c094fb4e-6c07-4a87-9435-fb97f11dde10
    [2]Pee-Yew Lee, Guo-Yang Hsu , Jing-Yi Huang, Huey-Lin Hsieh ,
    Hung-Chang Hsu(2003)。Bi2Te3熱電合金塊材之製備與特性研究,台灣材料學會
    [3] Фазовая диаграмма системы Bi-Te,檢自:http://www.himikatus.ru/art/phase-diagr1/Bi-Te.php
    [4]陳洋元 陳正龍,熱電於再生能源之運用,2020-04-15,檢自:https://pb.ps-taiwan.org/catalog/ins.php?index_m1_id=5&index_id=548
    [5] 魏百駿,導電不導熱的熱電材料新契機,2017年3月29日,檢自:http://scimonth.blogspot.com/2017/03/blog-post_4.html
    [6]熱電說:聲子無非三兩闋|Ising專欄,2018-05-13,檢自:https://kknews.cc/zh-tw/science/ebroopq.html
    [7] Classical and Statistical Thermodynamics (Ashley H.
    Carter) 16.3 節,p296 –p301。
    [8] 取材於THERMOELECTRICS HANDBOOKS—MACRO TO NANO, edited by D. M. Rowe)
    [9] 氫氧焰水焊機原理,檢自http://umwelder.byethost5.com/news.html
    [10]Bridgman–Stockbarger方法,檢自
    :https://en.wikipedia.org/wiki/Bridgman%E2%80%93Stockbarger_method
    [11]Review of Scientific Instruments 86, 023904 (2015); https://doi.org/10.1063/1.4913529
    [12]汎達科技,精密切割機,檢自:https://www.pentad.com.tw/product/41
    [13]全拓科技有限公司,NETZSCH LFA 457 閃光法熱擴散熱傳導分析儀 說明影片,2014年1月28日,檢自:https://www.youtube.com/watch?v=POrSr9sC_qA
    [14]NETZSCH Group,Laser Flash Apparatus,檢自:https://www.netzsch-thermal-analysis.com/en/products-solutions/thermal-diffusivity-conductivity/lfa-457-microflash/
    [15] NETZSCH Group,Principle of the LFA Method,
    檢自:https://www.netzsch-thermal-analysis.com/en/landing-pages/principle-of-the-lfa-method/
    [16] 四端點測量技術,2014年5月5日,檢自
    :https://zh.wikipedia.org/wiki/%E5%9B%9B%E7%AB%AF%E7%82%B9%E6%B5%8B%E9%87%8F%E6%8A%80%E6%9C%AF
    [17]ADVANCE RIKO,Inc.,熱電特性評價裝置ZEM-3系列,檢自:https://advance-riko.com/zh-hans/products/zem-3/
    [18]檢自:https://www.malvernpanalytical.com/en/products/product-range/empyreanrange/empyrean/?campaignid=1472123684&adgroupid=62535119892&creative=281861300634&keyword=panalytical%20empyrean%20x%20ray%20diffractometer&matchtype=e&network=g&device=c&gclid=EAIaIQobChMIivyO-46y8AIVmraWCh2YogZiEAAYASAAEgLDQvD_BwE#Overview-0
    [19]阮弼群,教學設備介紹,檢自:https://mse.mcut.edu.tw/p/412-1043-968.php?Lang=zh-tw
    [20]國家實驗研究院,科普講堂,檢自:
    https://www.narlabs.org.tw/xcscience/cont?xsmsid=0I148638629329404252&sid=0K107352975420455604
    [21]利泓科技,XRF (X-ray Fluorescence Spectrometer)光譜分析原理,2017年,檢自:https://www.rightek.com.tw/product_detail.php?id=183
    [22] Quantum Design 中國子公司,2012年09月,綜合物性測量系統(PPMS)產品說明手冊,美國: Quantum Design 公司。
    [23] Bin Zhu, Energy Environ. Sci., 2020, 13, 2106,
    Description: 碩士
    國立政治大學
    應用物理研究所
    108755012
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0108755012
    Data Type: thesis
    DOI: 10.6814/NCCU202101332
    Appears in Collections:[應用物理研究所 ] 學位論文

    Files in This Item:

    File Description SizeFormat
    501201.pdf6510KbAdobe PDF2131View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback