English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 109952/140891 (78%)
Visitors : 46233446      Online Users : 1203
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/147033
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/147033


    Title: 無人機區域偵查及目標物件定位策略之技術研究
    Technical Research on UAV Area Search and Object Geolocation Strategy
    Authors: 劉益誠
    Liu, Yi-Chen
    Contributors: 劉吉軒
    Liu, Jyi-Shane
    劉益誠
    Liu, Yi-Chen
    Keywords: 智慧無人機
    區域偵查
    平面視覺
    距離預測
    三角測量
    地理座標投影
    區域覆蓋路徑規劃
    無人機定位策略
    特徵比對
    Smart UAV
    Area Search
    2D vision
    Distance Estimation
    Triangulation
    Geographic Coordinate Projection
    Coverage Path Planning
    UAV Geolocation Strategy
    Feature Matching
    Date: 2023
    Issue Date: 2023-09-01 15:24:38 (UTC+8)
    Abstract: 無人機在現今產業發展快速,因其相較於需人員搭載的飛行器有更低的
    製造成本、更高的機動性而且減少了駕駛人員傷亡的風險而大量應用於過
    往需要人力的工作上。無人機發展初期主要應用於軍事用途上,但隨著技
    術逐漸商用化無人機逐漸在民生用途上取得大量的發展,包含在工業、農
    業、電影拍攝甚至是競技娛樂都出現了無人機的應用技術。除了無人機硬
    體本身的發展外,影像處理的技術發展使無人機能在更多應用場景發揮價
    值,尤其是平面視覺的影像處理技術使無人機能夠以平面視覺的相機進行
    更多的任務,特別是對於重量有限制而無法搭載大量感測器的微型無人機。
    對於微型無人機來說平面相機、GPS、指北針與高度計是常備的感測
    器,因此本研究對於偵查區域內目標物件定位任務以微型無人機常備的感
    測器發展三項定位策略來達成不同任務環境下的目標偵查與定位。其中,
    多點平均定位策略以單目視覺定位模組為主,搭配平面視覺影像及感測器
    數據來達成對地上目標物件的定位,並利用了無人機執行任務的連續性對
    感測器資料進行校正進而提升定位結果的可靠度。為了降低感測器的依賴
    程度,本研究以三角計算的方式發展三角測量定位策略,成功降低感測器
    的依賴度以及高度對於定位準確度的影響。影像比對定位策略則是以特徵
    比對技術為基礎來達成純影像的定位任務,使無人機在感測器失效的任務
    環境下仍能夠達成定位任務。
    With the rapid development of unmanned aerial vehicle technology and it’s
    high mobility, low risk for drone pilot.Unmanned Aerial Vehicle have been used
    in a variety of applications.In early stage, UAV was mainly used for military
    purposes.But, with UAV technology became more and more prevalent, UAV widely
    applied on Manufacturing industry, agriculture and film industry.Beside the UAV
    technology, the development of image processing also improve development of
    UAV application.And 2D-vision-based image processing was important especially
    for micro UAV because of it’s weight limit.
    For micro UAV, the commonly equipped sensors are a camera, GPS, compass
    and altimeter. Therefore, this research develop three geolocation strategies using
    the sensors commonly found on micro drones to achieve target detection and
    positioning in different mission environments. Among them, the multi-point
    averaging geolocation strategy focuses on the monocular visual positioning module,
    using plane visual images and sensor data to locate ground target.This strategy
    also calibrate the sensor data to improve the reliability of the positioning results.
    To reduce sensor dependency, a triangulation geolocation strategy was developed
    using trigonometric calculations, successfully reducing the reliance on sensors and
    mitigating the impact of altitude on positioning accuracy. The image matching
    geolocation strategy is based on feature matching techniques to achieve pure imagebased
    positioning tasks, enabling drones to perform positioning tasks even in
    mission environments where sensors may fail.
    Reference: [1] Robot operating system (ros) https://www.ros.org/.
    [2] Ros-mobile http://wiki.ros.org/ros-mobile.
    [3] Rodney Brooks. A robust layered control system for a mobile robot. IEEE Journal on
    Robotics and Automation, 2(1):14–23, 1986.
    [4] John Canny. A computational approach to edge detection. IEEE Transactions on Pattern
    Analysis and Machine Intelligence, 8(6):679–698, 1986.
    [5] D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature space analysis.
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603–619, 2002.
    [6] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superpoint: Self-
    supervised interest point detection and description. Computer Vision and Pattern
    Recognition(CVPR), 2018.
    [7] Yoav Gabriely and Elon Rimon. Spanning-tree based coverage of continuous areas by a
    mobile robot. International Conference on Robotics and Automation, 2:1927–1933, 2001.
    [8] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
    Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.
    NeurIPS, 27, 2014.
    [9] Fatih Gökçe, Göktürk Üçoluk, Erol ̧Sahin, and Sinan Kalkan. Vision-based detection
    and distance estimation of micro unmanned aerial vehicles. Sensors, 15(9):23805–23846,
    2015.
    [10] Elder M. Hemerly. Automatic georeferencing of images acquired by uav’s. International
    Journal of Automation and Computing, 11(347–352), 2014.
    [11] Luc Van Gool Herbert Bay, Tinne Tuytelaars. Surf: Speeded up robust features. Computer
    Vision
    –ECCV, 3951, 2006.
    [12] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation
    with conditional adversarial networks. International Journal of Computer Vision, 2018.
    [13] Charles F. F. Karney. Algorithms for geodesics. Journal of Geodesy, 87:43–55, 2013.
    [14] Ragab Khalil. The accuracy of gis tools for transforming assumed total station surveys to
    real world coordinates. Geographic Information System, 5(486-491), 2013.
    [15] Arturo De la Escalera and Jose María Armingol. Automatic chessboard detection for
    intrinsic and extrinsic camera parameter calibration. Sensors, 10(3)(2027-2044), 2010.
    [16] Chaozhen Lan, Wanjie Lu, Junming Yu, and Qing Xu. Deep learning algorithm for feature
    matching of cross modality remote sensing images. Acta Geodaetica et Cartographica
    Sinica, 50(2):14–23, 2021.
    [17] Zuoyue Li, Jan Dirk Wegner, and Aurelien Lucchi. Topological map extraction from
    overhead images. International Conference on Computer Vision, 2019.
    [18] Xiao Ling, Yongjun Zhang, Jinxin Xiong, Xu Huang, and Zhipeng Chen. An image
    matching algorithm integrating global srtm and image segmentation for multi-source
    satellite imagery. Remote Sensing, 8, 2016.
    [19] D.G Lowe. Distinctive image features from scale-invariant keypoints. International
    Journal of Computer Vision, 60(91–110), 2004.
    [20] L. H. Nam, L. Huang, X. J. Li, and J. F. Xu. An approach for coverage path planning for
    uavs. IEEE 14th International Workshop on Advanced Motion Control, (411-416), 2016.
    [21] Donggeun Oh and Junghee Han. Smart search system of autonomous flight uavs for
    disaster rescue. Sensors, 21(20), 2021.
    [22] Edwin Olson. Apriltag: A robust and flexible visual fiducial system. International
    Conference on Robotics and Automation, 2011.
    [23] Parrot. Anafi https://www.parrot.com/en/drones/anafi.
    [24] Parrot. Bebop2 https://www.parrot.com/en/drones.
    [25] Shashikant Prasad. pix2pix gan for generating maps given satellite images using
    pytorch, https:// medium.com/ @skpd/ pix2pix-gan-for-generating-map-given-satellite-
    images-using-pytorch-6e50c318673a.
    [26] Wahyu Rahmaniar, Wen-June Wang, Wahyu Caesarendra, Adam Glowacz, Krzysztof
    Oprz ̨edkiewicz, Maciej Sułowicz, and Muhammad Irfan. Distance measurement
    of unmanned aerial vehicles using vision-based systems in unknown environments.
    Electronics, 10(14), 2021.
    [27] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: an efficient
    alternative to sift or surf. Proceedings of the IEEE International Conference on Computer
    Vision, (2564-2571), 2011.
    [28] Sajid Saleem, Abdul Bais, and Robert Sablatnig. Towards feature points based image
    matching between satellite imagery and aerial photographs of agriculture land. Computers
    and Electronics in Agriculture, 126:12–20, 2016.
    [29] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich.
    Superglue: Learning feature matching with graph neural networks. Computer Vision and
    Pattern Recognition(CVPR), 2020.
    [30] Chris Simpson. Behavior trees for ai: How they work, https://www.gamedeveloper.com/
    programming/behavior-trees-for-ai-how-they-work.
    [31] Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and Xiaowei Zhou. Loftr:
    Detector-free local feature matching with transformers. Computer Vision and Pattern
    Recognition(CVPR), 2021.
    [32] Dengqing Tang, Tianjiang Hu, Zhaowei Ma, Lincheng Shen, and Chongyu Pan. Apriltag
    array-aided extrinsic calibration of camera–laser multi-sensor system. Robotics and
    Biomimetics, 3(13), 2016.
    [33] Jinbiao Yuan, Zhenbao Liu, Yeda Lian, Lulu Chen, Qiang An, Lina Wang, and Bodi Ma.
    Global optimization of uav area coverage path planning based on good point set and genetic
    algorithm. Aerospace, 9(2), 2022.
    [34] Xiaoyue Zhao, Fangling Pu, Zhihang Wang, Hongyu Chen, and Zhaozhuo Xu. Detection,
    tracking, and geolocation of moving vehicle from uav using monocular camera. IEEE
    Access, 7:101160–101170, 2019.
    [35] 佐翼科技. Dx30-w1 https://www.droxotech.com/.
    [36] 內政部國土測繪中心. 國土測繪圖資服務雲 https://maps.nlsc.gov.tw.
    [37] 擎壤科技. Eg2 https://www.earthgen.com.tw/eg2.
    Description: 碩士
    國立政治大學
    資訊科學系
    110753136
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110753136
    Data Type: thesis
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    313601.pdf15598KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback