数据加载中.....

请使用永久网址来引用或连结此文件:
https://nccur.lib.nccu.edu.tw/handle/140.119/148472

题名:  具關鍵字搜尋之公開金鑰認證加密：新型框架及抗量子實例化 Publickey Authenticated Encryption with Keyword Search: Novel Frameworks and Quantumresistant Instantiations 
作者:  劉子源 Liu, ZiYuan 
贡献者:  左瑞麟 Tso, RayLin 劉子源 Liu, ZiYuan 
关键词:  新型框架 抗量子密碼 關鍵字搜尋 基於身分加密 通用架構 公開金鑰認證加密 Novel frameworks Quantumresistant cryptosystems Keyword search Identitybased encryption Generic construction Publickey authenticated encryption 
日期:  2023 
上传时间:  20231201 10:33:07 (UTC+8) 
摘要:  隨著雲端服務的應用不斷地發展，愈來愈多使用者能夠透過這些應用便利及彈性地使用其珍貴的數位資料。為了避免敏感資料外洩，資料擁有者需在上傳資料至雲端前將其進行加密。然而，經加密後的資料便喪失了被搜尋的功能。具關鍵字搜尋之公開金鑰加密提供了解決辦法，但現有的架構大多無法抵擋來自內部攻擊者的關鍵字猜測攻擊。其原因在於惡意內部者可以獲取資料接收者傳送的搜尋請求，他可以任意測試他所生成的可搜尋密文，以竊取與搜尋請求相關的關鍵字資訊。為了避免此安全問題，具關鍵字搜尋之公開金鑰認證加密被提出，在此架構中，搜尋請求只對於特定的資料擁有者所產生的可搜尋密文有其效用，避免內部攻擊者能自行產生可搜尋密文來進行攻擊。
本文深入探討具關鍵字搜尋之公開金鑰認證加密的兩個議題。首先，雖然許多具關鍵字搜尋之公開金鑰認證加密架構已經被提出，例如基於公鑰、身份、無憑證及憑證架構，但仍然無一架構能在安全、效率及便利上取得平衡。為了解決這個議題，本論文提出一新型框架——身分認證機構協助之基於身分之搜尋加密框架，與先前架構相比，此框架中的使用者可透過身分來代替需憑證認證之公鑰，以達到使用上的便利性，同時藉由身分認證機構協助，來避免基於身分架構常見之金鑰託管問題，此外，此框架更結合具關鍵字搜尋之公開金鑰認證加密的概念，以避免關鍵字猜測攻擊，以達到安全、效率及便利上之平衡。其次，由於現有架構之安全性皆基於離散對數難問題，並且Shor於1994年已提出一量子演算法能於多項式時間內破解離散對數難問題，因此，隨著量子電腦逐漸發展成熟，構造出能抵擋量子攻擊之具關鍵字搜尋之公開金鑰認證加密成為重要之議題。為了達到這個目標，本論文首先提出一需可信賴方協助之具關鍵字搜尋之公開金鑰認證加密之通用架構，透過可信賴方協助，使得資料擁有者及接收者能獲得一共享秘密，而資料接收者產生之搜尋要求只對擁有此共享秘密之資料擁有者有效用，以避免關鍵字猜測攻擊。在此通用架構的概念下，此論文進一步移除可信賴方協助之需求，提出一具關鍵字搜尋之公開金鑰認證加密之通用架構。透過此通用架構，此論文採用基於晶格之元件，提出第一個可抗量子攻擊之具關鍵字搜尋之公開金鑰認證加密。 As cloud service applications continue to develop, an increasing number of users are able to conveniently and flexibly utilize their valuable digital data through these applications. To prevent sensitive data leakage, the data sender must encrypt their data before uploading them to the cloud. However, after the data is encrypted, they cannot be searched. Public key encryption with keyword search (PEKS) provides a solution to this problem. However, most existing PEKS schemes are vulnerable to keyword guessing attacks (KGA) from internal adversaries. Because a malicious insider can obtain search requests sent by the data receiver, it can test any searchable ciphertext it has generated to steal keyword information related to search requests and encrypted data. To avoid this security loophole, public key authenticated encryption with keyword search (PAEKS) was proposed. Unlike PEKS, search requests in PAEKS are only valid for the searchable ciphertext generated by a specific data sender; therefore, PAEKS can prevent internal adversaries from adaptively generating searchable ciphertexts to attack.
This dissertation provides an indepth discussion of two issues related to PAEKS. First, although many PAEKS schemes have been proposed, such as publickeybased, identitybased, certificateless, and certificatebased schemes, no related scheme can balance between security, efficiency, and convenience. To solve this problem, this dissertation proposes a new framework: identitycertifying authorityaided identitybased searchable encryption. The proposed framework differs from others in that users can use their identity as a public key instead of using a public key that requires certificate authentication. In addition, with the help of an identitycertifying authority, this framework solves key escrow problems. Furthermore, this framework also incorporates the concept of PAEKS to prevent KGA from striking a good balance between security, efficiency, and convenience. Second, the security of current PAEKS schemes is based on the discrete logarithm problem. As demonstrated by Shor in 1994, a quantum algorithm can solve the discrete logarithm problem in polynomial time. The technology behind quantum computers has gradually matured; consequently, constructing a PAEKS scheme that can withstand quantum attacks has become an important goal. To achieve this, a generic trusted authorityaided PAEKS construction is proposed in this dissertation. In this construction, with the assistance of a trusted authority, the data sender and data receiver can obtain a shared secret, and the search request generated by the data receiver is only valid for the searchable ciphertext generated by the data sender; this prevents keyword guessing attacks. On the basis of this idea, a generic PAEKS construction without the need for a trusted authority is further proposed. Therefore, the first quantumresistant PAEKS scheme can be instantiated through latticebased building blocks. 
參考文獻:  [AAB+19] F. Arute, K. Arya, R. Babbush, et al., “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, 2019 (cit. p. 7). [ABB10] S. Agrawal, D. Boneh, and X. Boyen, “Efficient lattice (H)IBE in the standard model,” in EUROCRYPT, 2010 (cit. pp. 25, 26, 117, 118). [ABC+05] M. Abdalla, M. Bellare, D. Catalano, et al., “Searchable encryption revisited: Consistency properties, relation to anonymous IBE, and extensions,” in CRYPTO, 2005 (cit. p. 13). [ABC+08] ——, “Searchable encryption revisited: Consistency properties, relation to anonymous IBE, and extensions,” J. Cryptol., vol. 21, no. 3, pp. 350–391, 2008 (cit. pp. 13, 83, 84). [ABN10] M. Abdalla, M. Bellare, and G. Neven, “Robust encryption,” in TCC, 2010 (cit. p. 14). [ABP15] M. Abdalla, F. Benhamouda, and D. Pointcheval, “Publickey encryption indistinguishable under plaintextcheckable attacks,” in PKC, 2015 (cit. p. 34). [ADM+20] M. H. Ameri, M. Delavar, J. Mohajeri, and M. Salmasizadeh, “A keypolicy attributebased temporary keyword search scheme for secure cloud storage,” IEEE Trans. Cloud Comput., vol. 8, no. 3, pp. 660–671, 2020 (cit. p. 15). [AFG+10] M. Armbrust, A. Fox, R. Griffith, et al., “A view of cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, 2010 (cit. p. 2). [AFI06] N. Attrapadung, J. Furukawa, and H. Imai, “Forwardsecure and searchable broadcast encryption with short ciphertexts and private keys,” in ASIACRYPT, 2006 (cit. p. 14). [AG10] N. Antonopoulos and L. Gillam, Cloud computing. Springer, 2010 (cit. p. 1). [AKM+18] H. Anada, A. Kanaoka, N. Matsuzaki, and Y. Watanabe, “Keyupdatable publickey encryption with keyword search: Models and generic constructions,” in ACISP, 2018 (cit. p. 14). [AKM+20] ——, “Keyupdatable publickey encryption with keyword search (Or: How to realize PEKS with efficient key updates for IoT environments),” Int. J. Inf. Sec., vol. 19, no. 1, pp. 15–38, 2020 (cit. p. 14). [AP03] S. S. AlRiyami and K. G. Paterson, “Certificateless public key cryptography,” in ASIACRYPT, 2003 (cit. p. 6). [AP11] J. Alwen and C. Peikert, “Generating shorter bases for hard random lattices,” Theory Comput. Syst., vol. 48, no. 3, pp. 535–553, 2011 (cit. p. 24). [ASS21] G. Asharov, G. Segev, and I. Shahaf, “Tight tradeoffs in searchable symmetric encryption,” J. Cryptol., vol. 34, no. 2, p. 9, 2021 (cit. p. 3). [BB11] D. Boneh and X. Boyen, “Efficient selective identitybased encryption without random oracles,” J. Cryptol., vol. 24, no. 4, pp. 659–693, 2011 (cit. p. 6). [BBB+97] C. H. Bennett, E. Bernstein, G. Brassard, and U. V. Vazirani, “Strengths and weaknesses of quantum computing,” SIAM J. Comput., vol. 26, no. 5, pp. 1510–1523, 1997 (cit. p. 133). [BBD+18] F. Benhamouda, O. Blazy, L. Ducas, and W. Quach, “Hash proof systems over lattices revisited,” in PKC, 2018 (cit. p. 117). [BBM00] M. Bellare, A. Boldyreva, and S. Micali, “Publickey encryption in a multiuser setting: Security proofs and improvements,” in EUROCRYPT, 2000 (cit. p. 2). [BC18] O. Blazy and C. Chevalier, “Noninteractive key exchange from identitybased encryption,” in ARES, 2018 (cit. p. 94). [BCO+04] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public key encryption with keyword search,” in EUROCRYPT, 2004 (cit. pp. 3, 4, 13, 16, 39, 41, 42, 118, 119). [BCR19] E. Blum, M. CastilloMartin, and M. Rosenberg. (2019). “Survey on the security of the quantum ROM,” [Online]. Available:https://mrosenberg.pub/assets/pdfs/qrom_survey.pdf (visited on Aug. 31, 2021) (cit. p. 133). [BDF+11] D. Boneh, O. Dagdelen, M. Fischlin, et al., “Random oracles in a quantum world,” in ASIACRYPT, 2011 (cit. p. 133). [BF01] D. Boneh and M. K. Franklin, “Identitybased encryption from the weil pairing,” in CRYPTO, 2001 (cit. p. 6). [BF03] ——, “Identitybased encryption from the weil pairing,” SIAM J. Comput., vol. 32, no. 3, pp. 586–615, 2003 (cit. p. 6). [BLS+15] F. Buccafurri, G. Lax, R. A. Sahu, and V. Saraswat, “Practical and secure integrated PKE+PEKS with keyword privacy,” in SECRYPT, 2015 (cit. p. 14). [BOY20] R. Behnia, M. O. Ozmen, and A. A. Yavuz, “Latticebased public key searchable encryption from experimental perspectives,” IEEE Trans. Dependable Secur. Comput., vol. 17, no. 6, pp. 1269–1282, 2020 (cit. pp. 20, 26, 94, 106, 112, 118–120, 128, 129). [BR94] M. Bellare and P. Rogaway, “Optimal asymmetric encryption,” in EUROCRYPT, 1994 (cit. p. 2). [BRP+06] J. W. Byun, H. S. Rhee, H.A. Park, and D. H. Lee, “Offline keyword guessing attacks on recent keyword search schemes over encrypted data,” in SDM, 2006 (cit. pp. 4, 15, 42). [BSS05] J. Baek, R. SafaviNaini, and W. Susilo, “Certificateless public key encryption without pairing,” in ISC, 2005 (cit. p. 6). [BSS06] ——, “On the integration of public key data encryption and public key encryption with keyword search,” in ISC, 2006 (cit. p. 14). [BSS08] ——,“Public key encryption with keyword search revisited,” in ICCSA, 2008 (cit. pp. 4, 16). [BW07] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on encrypted data,” in TCC, 2007 (cit. p. 14). [CD20] P. Chaudhari and M. L. Das, “KeySea: Keywordbased search with receiver anonymity in attributebased searchable encryption,” IEEE Trans. Serv. Comput., 2020 (cit. p. 15). [CD21] ——, “Privacy preserving searchable encryption with finegrained access control,” IEEE Trans. Cloud Comput., vol. 9, no. 2, pp. 753–762, 2021 (cit. p. 15). [CDV+12] R. Canetti, D. DachmanSoled, V. Vaikuntanathan, and H. Wee, “Efficient password authenticated key exchange via oblivious transfer,” in PKC, 2012 (cit. p. 36). [CGK+06] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric encryption: Improved definitions and efficient constructions,” in CCS, 2006 (cit. p. 3). [Che15] Y.C. Chen, “SPEKS: secure serverdesignation public key encryption with keyword search against keyword guessing attacks,” Comput. J., vol. 58, no. 4, pp. 922–933, 2015 (cit. p. 16). [Cho09] S. S. M. Chow, “Removing escrow from identitybased encryption,” in PKC, 2009 (cit. pp. 9, 46). [CKM11] M. Carroll, P. Kotze, and A.V. D. Merwe, “Secure cloud computing: Benefits, risks and controls,” in ISSA, 2011 (cit. p. 2). [CLC+19] L. Chen, W.K. Lee, C.C. Chang, K.K. R. Choo, and N. Zhang, “Blockchain based searchable encryption for electronic health record sharing,” Future Gener. Comput. Syst., vol. 95, pp. 420–429, 2019 (cit. p. 15). [CLZ+21] J. Cui, J. Lu, H. Zhong, et al., “Parallel keyinsulated multiuser searchable encryption for industrial Internet of things,” IEEE Trans. Ind. Informatics, 2021 (cit. p. 15). [CM21] L. Cheng and F. Meng, “Security analysis of Pan et al.’s “Publickey authenticated encryption with keyword search achieving both multiciphertext and multitrapdoor indistinguishability”,” J. Syst. Archit., vol. 119, p. 102 248, 2021 (cit. p. 19). [CMS19] A. Chiesa, P. Manohar, and N. Spooner, “Succinct arguments in the quantum random oracle model,” in TCC, 2019 (cit. p. 133). [CMY+15] R. Chen, Y. Mu, G. Yang, F. Guo, and X. Wang, “A new general framework for secure public key encryption with keyword search,” in ACISP, 2015 (cit. pp. 5, 17, 18). [CMY+16a] ——, “Dualserver publickey encryption with keyword search for secure cloud storage,” IEEE Trans. Inf. Forensics Secur., vol. 11, no. 4, pp. 789–798, 2016 (cit. pp. 5, 17, 18). [CMY+16b] R. Chen, Y. Mu, G. Yang, et al., “Serveraided public key encryption with keyword search,” IEEE Trans. Inf. Forensics Secur., vol. 11, no. 12, pp. 2833–2842, 2016 (cit. pp. 5, 18). [CPP+18] J. G. Chamani, D. Papadopoulos, C. Papamanthou, and R. Jalili, “New constructions for forward and backward private symmetric searchable encryption,” in CCS, 2018 (cit. p. 3). [CS02] R. Cramer and V. Shoup, “Universal hash proofs and a paradigm for adaptive chosen ciphertext secure publickey encryption,” in EUROCRYPT, 2002 (cit. p. 36). [CS07] G. D. Crescenzo and V. Saraswat, “Public key encryption with searchable keywords based on Jacobi symbols,” in INDOCRYPT, 2007 (cit. p. 13). [CS98] R. Cramer and V. Shoup, “A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack,” in CRYPTO, 1998 (cit. p. 2). [CSA+21] S. Cui, X. Song, M. R. Asghar, S. D. Galbraith, and G. Russello, “Privacypreserving dynamic symmetric searchable encryption with controllable leakage,” ACM Trans. Priv. Secur., vol. 24, no. 3, 18:1–18:35, 2021 (cit. p. 3). [CW21] P.W. Chi and M.H. Wang, “Deniable search of encrypted cloudstorage data,” J. Inf. Secur. Appl., vol. 58, p. 102 806, 2021 (cit. p. 15). [CWL+21] Z. Chen, A. Wu, Y. Li, Q. Xing, and S. Geng, “Blockchainenabled public key encryption with multikeyword search in cloud computing,” Secur. Commun. Networks, vol. 2021, 6619689:1–6619689:11, 2021 (cit. p. 15). [CWZ+19] B. Chen, L. Wu, S. Zeadally, and D. He, “Dualserver publickey authenticated encryption with keyword search,” IEEE Trans. Cloud Comput., 2019 (cit. pp. 5, 45, 47, 71–74, 98). [CZL+16] Y. Chen, J. Zhang, D. Lin, and Z. Zhang, “Generic constructions of integrated PKE and PEKS,” Des. Codes Cryptogr., vol. 78, no. 2, pp. 493–526, 2016 (cit. p. 14). [DCP+20] I. Demertzis, J. G. Chamani, D. Papadopoulos, and C. Papamanthou, “Dynamic searchable encryption with small client storage,” in NDSS, 2020 (cit. p. 3). [DGK+10] Y. Dodis, S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan, “Publickey encryption schemes with auxiliary inputs,” in TCC, 2010 (cit. p. 2). [DHP+18] P.A. Dupont, J. Hesse, D. Pointcheval, L. Reyzin, and S. Yakoubov, “Fuzzy passwordauthenticated key exchange,” in EUROCRYPT, 2018 (cit. p. 36). [DLL+20] L. Du, K. Li, Q. Liu, Z. Wu, and S. Zhang, “Dynamic multiclient searchable symmetric encryption with support for Boolean queries,” Inf. Sci., vol. 506, pp. 234–257, 2020 (cit. p. 3). [DLP14] L. Ducas, V. Lyubashevsky, and T. Prest, “Efficient identitybased encryption over NTRU lattices,” in ASIACRYPT, 2014 (cit. pp. 26–28, 78, 94, 99, 100). [DR01] J. Daemen and V. Rĳmen, “Reĳndael: The advanced encryption standard,” Dr. Dobb’s Journal: Software Tools for the Professional Programmer, vol. 26, no. 3, pp. 137–139, 2001 (cit. p. 2). [DWC10] T. S. Dillon, C. Wu, and E. Chang, “Cloud computing: Issues and challenges,” in AINA, 2010 (cit. p. 2). [EIO20] K. Emura, K. Ito, and T. Ohigashi, “Securechannel free searchable encryption with multiple keywords: A generic construction, an instantiation, and its implementation,” J. Comput. Syst. Sci., vol. 114, pp. 107–125, 2020 (cit. p. 17). [EKW19] K. Emura, S. Katsumata, and Y. Watanabe, “Identitybased encryption with security against the KGC: A formal model and its instantiation from lattices,” in ESORICS, 2019 (cit. pp. 9, 47, 51). [EMO11] K. Emura, A. Miyaji, and K. Omote, “Adaptive securechannel free publickey encryption with keyword search implies timed release encryption,” in ISC, 2011 (cit. p. 17). [EMR+15] K. Emura, A. Miyaji, M. S. Rahman, and K. Omote, “Generic constructions of securechannel free searchable encryption with adaptive security,” Secur. Commun. Networks, vol. 8, no. 8, pp. 1547–1560, 2015 (cit. p. 17). [Emu17] K. Emura, “A generic construction of securechannel free searchable encryption with multiple keywords,” in NSS, 2017 (cit. p. 17). [ER12] K. Emura and M. S. Rahman, “Constructing securechannel free searchable encryption from anonymous IBE with partitioned ciphertext structure,” in SECRYPT, 2012 (cit. p. 17). [FE+10] B. Furht, A. Escalante, et al., Handbook of cloud computing. Springer, 2010, vol. 3 (cit. p. 1). [FP07] T. Fuhr and P. Paillier, “Decryptable searchable encryption,” in ProvSec, 2007 (cit. p. 14). [FR19] O. Farras and J. RibesGonzalez, “Provably secure publickey encryption with conjunctive and subset keyword search,” Int. J. Inf. Sec., vol. 18, no. 5, pp. 533–548, 2019 (cit. p. 15). [FSG+09] L. Fang, W. Susilo, C. Ge, and J. Wang, “A secure channel free public key encryption with keyword search scheme without random oracle,” in CANS, 2009 (cit. p. 16). [FV16] A. Faonio and D. Venturi, “Efficient publickey cryptography with bounded leakage and tamper resilience,” in ASIACRYPT, 2016 (cit. p. 2). [Gaj16] S. Gajek, “Dynamic symmetric searchable encryption from constrained functional encryption,” in CTRSA, 2016 (cit. p. 3). [GCJ+20] C. Guo, X. Chen, Y. Jie, et al., “Dynamic multiphrase ranked search over encrypted data with symmetric searchable encryption,” IEEE Trans. Serv. Comput., vol. 13, no. 6, pp. 1034–1044, 2020 (cit. p. 3). [Gen03] C. Gentry, “Certificatebased encryption and the certificate revocation problem,” in EUROCRYPT, 2003 (cit. p. 6). [GGH97] O. Goldreich, S. Goldwasser, and S. Halevi, “Publickey cryptosystems from lattice reduction problems,” in CRYPTO, 1997 (cit. p. 2). [GK10] A. Groce and J. Katz, “A new framework for efficient passwordbased authenticated key exchange,” in CCS, 2010 (cit. p. 36). [GL03] R. Gennaro and Y. Lindell, “A framework for passwordbased authenticated key exchange,” in EUROCRYPT, 2003 (cit. p. 36). [GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard lattices and new cryptographic constructions,” in STOC, 2008 (cit. pp. 24, 27). [GZP07] C. Gu, Y. Zhu, and H. Pan, “Efficient public key encryption with keyword search schemes from pairings,” in Inscrypt, 2007 (cit. p. 16). [Han20] W. A. Hanson, “The CORAL supercomputer systems,” IBM J. Res. Dev., vol. 64, no. 3/4, 1:1–1:10, 2020 (cit. p. 7). [Hay08] B. Hayes, “Cloud computing,” Commun. ACM, vol. 51, no. 7, pp. 9–11, 2008 (cit. p. 1). [HCZ+21] K. He, J. Chen, Q. Zhou, R. Du, and Y. Xiang, “Secure dynamic searchable symmetric encryption with constant client storage cost,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 1538–1549, 2021 (cit. p. 3). [HFP+18] G. Hatzivasilis, K. Fysarakis, I. Papaefstathiou, and C. Manifavas, “A review of lightweight block ciphers,” J. Cryptogr. Eng., vol. 8, no. 2, pp. 141–184, 2018 (cit. p. 2). [HHK17] D. Hofheinz, K. H.velmanns, and E. Kiltz, “A modular analysis of the FujisakiOkamoto transformation,” in TCC, 2017 (cit. p. 133). [HHP+03] J. Hoffstein, N. HowgraveGraham, J. Pipher, J. H. Silverman, and W. Whyte, “NTRUSIGN: Digital signatures using the NTRU lattice,” in CTRSA, 2003 (cit. p. 26). [HL07] Y. H. Hwang and P. J. Lee, “Public key encryption with conjunctive keyword search and its extension to a multiuser system,” in Pairing, 2007 (cit. pp. 14, 15). [HL17] Q. Huang and H. Li, “An efficient publickey searchable encryption scheme secure against inside keyword guessing attacks,” Inf. Sci., vol. 403, pp. 1–14, 2017 (cit. pp. 5, 18, 19, 39, 41, 45, 99, 102, 103, 118, 119). [HMZ+18] D. He, M. Ma, S. Zeadally, N. Kumar, and K. Liang, “Certificateless public key authenticated encryption with keyword search for industrial Internet of things,” IEEE Trans. Ind. Informatics, vol. 14, no. 8, pp. 3618–3627, 2018 (cit. pp. 5, 6, 19, 20, 46, 47, 71–74, 98, 99, 102, 103). [HPS98] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ringbased public key cryptosystem,” in ANTS, 1998 (cit. pp. 2, 25). [HRS17] T. H.ner, M. Roetteler, and K. M. Svore, “Factoring using 2𝑛 + 2 qubits with toffoli based modular multiplication,” Quantum Inf. Comput., vol. 17, no. 7&8, pp. 673–684, 2017 (cit. p. 8). [HW08] D. Hofheinz and E. Weinreb, Searchable encryption with decryption in the standard model, IACR ePrint, 2008 (cit. p. 14). [HYY21] Q. Huang, G. Yan, and Y. Yang, “Privacypreserving traceable attributebased keyword search in multiauthority medical cloud,” IEEE Trans. Cloud Comput., 2021 (cit. p. 15). [IKA+16] S. Iqbal, M. L. M. Kiah, N. B. Anuar, et al., “Service delivery models of cloud computing: Security issues and open challenges,” Secur. Commun. Networks, vol. 9, no. 17, pp. 4726–4750, 2016 (cit. p. 2). [INH+11] L. Ibraimi, S. Nikova, P. H. Hartel, and W. Jonker, “Publickey encryption with delegated search,” in ACNS, 2011 (cit. p. 14). [JKH+09] I. R. Jeong, J. O. Kwon, D. Hong, and D. H. Lee, “Constructing PEKS schemes secure against keyword guessing attacks is possible?” Comput. Commun., vol. 32, no. 2, pp. 394–396, 2009 (cit. pp. 14, 16). [JKX18] S. Jarecki, H. Krawczyk, and J. Xu, “OPAQUE: an asymmetric PAKE protocol secure against precomputation attacks,” in EUROCRYPT, 2018 (cit. p. 36). [JMG+16] P. Jiang, Y. Mu, F. Guo, and Q. Wen, “Public key encryption with authorized keyword search,” in ACISP, 2016 (cit. p. 14). [JN03] A. Joux and K. Nguyen, “Separating decision DiffieHellman from computational DiffieHellman in cryptographic groups,” J. Cryptol., vol. 16, no. 4, pp. 239–247, 2003 (cit. p. 28). [KKK+13] A. N. Khan, M. L. M. Kiah, S. U. Khan, and S. A. Madani, “Towards secure mobile cloud computing: A survey,” Future Gener. Comput. Syst., vol. 29, no. 5, pp. 1278–1299, 2013 (cit. p. 2). [KL20] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Third Edition. CRC Press, 2020 (cit. p. 34). [KLH+18] A. Kobusinska, C. K.S. Leung, C.H. Hsu, R. S., and V. Chang, “Emerging trends, issues and challenges in Internet of things, big data and cloud computing,” Future Gener. Comput. Syst., vol. 87, pp. 416–419, 2018 (cit. p. 2). [KM14] F. Kiefer and M. Manulis, “Distributed smooth projective hashing and its application to twoserver password authenticated key exchange,” in ACNS, 2014 (cit. p. 37). [KP13] S. Kamara and C. Papamanthou, “Parallel and dynamic searchable symmetric encryption,” in FC, 2013 (cit. p. 3). [KPR12] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable symmetric encryption,” in CCS, 2012 (cit. p. 3). [KV09] J. Katz and V. Vaikuntanathan, “Smooth projective hashing and passwordbased authenticated key exchange from lattices,” in ASIACRYPT, 2009 (cit. p. 36). [KV10] R. L. Krutz and R. D. Vines, Cloud security: A comprehensive guide to secure cloud computing. 2010 (cit. p. 2). [KV11] J. Katz and V. Vaikuntanathan, “Roundoptimal passwordbased authenticated key exchange,” in TCC, 2011 (cit. p. 36). [KV13] ——,“Roundoptimal passwordbased authenticated key exchange,” J. Cryptol., vol. 26, no. 4, pp. 714–743, 2013 (cit. p. 36). [LFK+14] H. Lasi, P. Fettke, H.G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,” Bus. Inf. Syst. Eng., vol. 6, no. 4, pp. 239–242, 2014 (cit. p. 2). [LHS+19] H. Li, Q. Huang, J. Shen, G. Yang, and W. Susilo, “Designatedserver identitybased authenticated encryption with keyword search for encrypted emails,” Inf. Sci., vol. 481, pp. 330–343, 2019 (cit. pp. 5, 6, 19, 46, 47, 71–74, 98, 99, 102, 103). [LHS20] H. Li, Q. Huang, and W. Susilo, “A secure cloud data sharing protocol for enterprise supporting hierarchical keyword search,” IEEE Trans. Dependable Secur. Comput., 2020 (cit. p. 15). [LHW+21] J. Li, Y. Huang, Y. Wei, et al., “Searchable symmetric encryption with forward search privacy,” IEEE Trans. Dependable Secur. Comput., vol. 18, no. 1, pp. 460–474, 2021 (cit. p. 3). [LHY+21] X. Liu, K. He, G. Yang, et al., “Broadcast authenticated encryption with keyword search,” in ACISP, 2021 (cit. p. 20). [LL19] Y. Lu and J. Li, “Efficient searchable public key encryption against keyword guessing attacks for cloudbased EMR systems,” Clust. Comput., vol. 22, no. 1, pp. 285–299, 2019 (cit. pp. 5, 45, 98). [LL21] ——, “Lightweight public key authenticated encryption with keyword search against adaptivelychosentargets adversaries for mobile devices,” IEEE Trans. on Mob. Comput., 2021 (cit. pp. 5, 19, 45, 98, 133). [LLW21] Y. Lu, J. Li, and F. Wang, “Pairingfree certificatebased searchable encryption supporting privacypreserving keyword search function for IIoTs,” IEEE Trans. Ind. Informatics, vol. 17, no. 4, pp. 2696–2706, 2021 (cit. pp. 5, 6, 20, 46, 47, 71–74, 98). [LLY+19] X. Liu, H. Li, G. Yang, et al., “Towards enhanced security for certificateless publickey authenticated encryption with keyword search,” in ProvSec, 2019 (cit. pp. 5, 6, 19, 46, 98, 99, 102, 103). [LLZ19] Y. Lu, J. Li, and Y. Zhang, “Secure channel free certificatebased searchable encryption withstanding outside and inside keyword guessing attacks,” IEEE Trans. Serv. Comput., 2019 (cit. pp. 5, 6, 20, 46, 47, 71–74, 98). [LLZ20] Y. Lu, J. Li, and Y. Zhang, “Privacypreserving and pairingfree multirecipient certificateless encryption with keyword search for cloudassisted IIoT,” IEEE Internet Things J., vol. 7, no. 4, pp. 2553–2562, 2020 (cit. pp. 5, 6, 46, 98). [LP11] F. Lombardi and R. D. Pietro, “Secure virtualization for cloud computing,” J. Netw. Comput. Appl., vol. 34, no. 4, pp. 1113–1122, 2011 (cit. p. 2). [LPQ12] B. Libert, K. G. Paterson, and E. A. Quaglia, “Anonymous broadcast encryption: Adaptive security and efficient constructions in the standard model,” in PKC, 2012 (cit. p. 2). [LPR10] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and learning with errors over rings,” in EUROCRYPT, 2010 (cit. p. 25). [LPR13] ——, “On ideal lattices and learning with errors over rings,” J. ACM, vol. 60, no. 6, 43:1–43:35, 2013 (cit. p. 25). [LQ06] B. Libert and J.J. Quisquater, “On constructing certificateless cryptosystems from identity based encryption,” in PKC, 2006 (cit. p. 6). [LSQ+18] X. J. Lin, L. Sun, H. Qu, and D. Liu, “On the security of secure serverdesignation public key encryption with keyword search,” Comput. J., vol. 61, no. 12, pp. 1791–1793, 2018 (cit. p. 16). [LTM+11] F. Liu, J. Tong, J. Mao, et al., “NIST cloud computing reference architecture,” National Institute of Standards and Technology, Gaithersburg, MD, Tech. Rep. NIST Special Publication (SP) 500292, 2011 (cit. p. 1). [LTT+22a] Z.Y. Liu, Y.F. Tseng, R. Tso, Y.C. Chen, and M. Mambo, “Identitycertifying authorityaided identitybased searchable encryption framework in cloud systems,” IEEE Syst. J., vol. 16, no. 3, pp. 4629–4640, 2022 (cit. p. 11). [LTT+22b] Z.Y. Liu, Y.F. Tseng, R. Tso, M. Mambo, and Y.C. Chen, “Publickey authenticated encryption with keyword search: A generic construction and its quantumresistant instantiation,” Comput. J., vol. 65, no. 10, pp. 2828–2844, 2022 (cit. p. 11). [LTT+22c] ——,“Publickey authenticated encryption with keyword search: Cryptanalysis, enhanced security, and quantumresistant instantiation,” in ASIACCS, 2022 (cit. p. 11). [LW19] Z. Li and D. Wang, “Achieving oneround passwordbased authenticated key exchange over lattices,” IEEE Trans. Serv. Comput., 2019 (cit. pp. 106, 112, 116, 118). [LWL19] Y. Lu, G. Wang, and J. Li, “Keyword guessing attacks on a public key encryption with keyword search scheme without random oracle and its improvement,” Inf. Sci., vol. 479, pp. 270–276, 2019 (cit. pp. 5, 45, 98). [LWQ+21] H. Li, T. Wang, Z. Qiao, et al., “Blockchainbased searchable encryption with efficient result verification and fair payment,” J. Inf. Secur. Appl., vol. 58, p. 102 791, 2021 (cit. p. 15). [LYD+20] H. Li, Y. Yang, Y. Dai, S. Yu, and Y. Xiang, “Achieving secure and efficient dynamic searchable symmetric encryption over medical cloud data,” IEEE Trans. Cloud Comput., vol. 8, no. 2, pp. 484–494, 2020 (cit. p. 3). [Lyn07] B. Lynn, “On the implementation of pairingbased cryptosystems,” https://crypto.stanford.edu/pbc/, Ph.D. dissertation, Stanford University, 2007 (cit. p. 100). [LZ08] J. K. Liu and J. Zhou, “Efficient certificatebased encryption in the standard model,” in SCN, 2008 (cit. p. 6). [Mer20] MerriamWebster Incorporated, MerriamWebster’s collegiate dictionary, 11th. MerriamWebster Incorporated, 2020 (cit. p. 4). [MFF20] M. Ma, S. Fan, and D. Feng, “Multiuser certificateless public key encryption with conjunctive keyword search for cloudbased telemedicine,” J. Inf. Secur. Appl., vol. 55, p. 102 652, 2020 (cit. p. 15). [MG11] P. Mell and T. Grance, “The NIST definition of cloud computing,” National Institute of Standards and Technology, Gaithersburg, MD, Tech. Rep. NIST Special Publication (SP) 800140, 2011 (cit. p. 1). [MH20] S. Ma and Q. Huang, “A new framework of INDCCA secure public key encryption with keyword search,” Comput. J., vol. 63, no. 12, pp. 1849–1858, 2020 (cit. p. 14). [MHK+18] M. Ma, D. He, N. Kumar, K.K. R. Choo, and J. Chen, “Certificateless searchable public key encryption scheme for industrial Internet of things,” IEEE Trans. Ind. Informatics, vol. 14, no. 2, pp. 759–767, 2018 (cit. p. 17). [MLB+11] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi, “Cloud computing  The business perspective,” Decis. Support Syst., vol. 51, no. 1, pp. 176–189, 2011 (cit. p. 1). [MLC20] A. Masood, D. S. Lakew, and S. Cho, “Security and privacy challenges in connected vehicular cloud computing,” IEEE Commun. Surv. Tutorials, vol. 22, no. 4, pp. 2725–2764, 2020 (cit. p. 2). [MMS+18] S. Ma, Y. Mu, W. Susilo, and B. Yang, “Witnessbased searchable encryption,” Inf. Sci., vol. 453, pp. 364–378, 2018 (cit. p. 18). [MP12] D. Micciancio and C. Peikert, “Trapdoors for lattices: Simpler, tighter, faster, smaller,” in EUROCRYPT, 2012 (cit. pp. 24, 112, 113, 117, 118). [MS13] T. Moataz and A. Shikfa, “Boolean symmetric searchable encryption,” in ASIACCS, 2013 (cit. p. 3). [NE19] M. Noroozi and Z. Eslami, “Public key authenticated encryption with keyword search: Revisited,” IET Inf. Secur., vol. 13, no. 4, pp. 336–342, 2019 (cit. pp. 5, 19, 45, 81, 98, 99, 102, 103, 133). [NE20] ——, “Publickey encryption with keyword search: A generic construction secure against online and offline keyword guessing attacks,” J. Ambient Intell. Humaniz. Comput., vol. 11, no. 2, pp. 879–890, 2020 (cit. p. 16). [NMO06] W. Nagao, Y. Manabe, and T. Okamoto, “A universally composable secure channel based on the KEMDEM framework,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. 89A, no. 1, pp. 28–38, 2006 (cit. p. 4). [NT21] S. K. Nayak and S. Tripathy, “SEPS: Efficient publickey based secure search over outsourced data,” J. Inf. Secur. Appl., vol. 61, p. 102 932, 2021 (cit. p. 15). [OK21] S. Oya and F. Kerschbaum, “Hiding the access pattern is not enough: Exploiting search pattern leakage in searchable encryption,” in USENIX Security, 2021 (cit. p. 3). [OOM+16] M. O’Neill, E. O’Sullivan, G. McWilliams, et al., “Secure architectures of future emerging cryptography SAFEcrypto,” in CF, 2016 (cit. p. 100). [OP92] T. Okamoto and D. Pointcheval, “The GapProblems: A new class of problems for the security of cryptographic schemes,” in PKC, 1992 (cit. p. 28). [PGM+19] E. Pednault, J. Gunnels, D. Maslov, and J. Gambetta. (2019). “On “quantum supremacy”,” [Online]. Available: https://www.ibm.com/blogs/research/2019/10/onquantumsupremacy/ (visited on Aug. 30, 2021) (cit. p. 7). [PKL04] D. J. Park, K. Kim, and P. J. Lee, “Public key encryption with conjunctive field keyword search,” in WISA, 2004 (cit. p. 14). [PL21] X. Pan and F. Li, “Publickey authenticated encryption with keyword search achieving both multiciphertext and multitrapdoor indistinguishability,” J. Syst. Archit., vol. 115, p. 102 075, 2021 (cit. pp. 5, 19, 45, 98). [PM21] S. Patranabis and D. Mukhopadhyay, “Forward and backward private conjunctive searchable symmetric encryption,” in NDSS, 2021 (cit. p. 3). [PSE20] N. Pakniat, D. Shiraly, and Z. Eslami, “Certificateless authenticated encryption with keyword search: Enhanced security model and a concrete construction for industrial IoT,” J. Inf. Secur. Appl., vol. 53, p. 102 525, 2020 (cit. pp. 5, 6, 20, 45–47, 71–74, 98, 99, 102, 103). [QCA+20] G. A. Quantum, Collaborators, F. Arute, et al., “HartreeFock on a superconducting qubit quantum computer,” Science, vol. 369, no. 6507, pp. 1084–1089, 2020 (cit. p. 7). [QCH+20] B. Qin, Y. Chen, Q. Huang, X. Liu, and D. Zheng, “Publickey authenticated encryption with keyword search revisited: Security model and constructions,” Inf. Sci., vol. 516, pp. 515–528, 2020 (cit. pp. 5, 19, 39, 45, 47, 51, 52, 71–74, 98, 99, 102, 103, 118, 119, 133). [QCZ+21] B. Qin, H. Cui, X. Zheng, and D. Zheng, “Improved security model for publickey authenticated encryption with keyword search,” in ProvSec, 2021 (cit. pp. 19, 133). [Qu99] M. Qu, “SEC 2: Recommended elliptic curve domain parameters,” Certicom Res., Mississauga, ON, Canada, Tech. Rep. SEC2Ver0.6, 1999 (cit. p. 74). [Reg05] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography,” in STOC, 2005 (cit. p. 118). [Reg09] ——, “On lattices, learning with errors, random linear codes, and cryptography,” J. ACM, vol. 56, no. 6, 34:1–34:40, 2009 (cit. p. 118). [Res18] E. Rescorla, “RFC 8446: The transport layer security (TLS) protocol version 1.3,” Internet Engineering Task Force (IETF), p. 25, 2018 (cit. pp. 4, 49). [RNS+17] M. Roetteler, M. Naehrig, K. M. Svore, and K. E. Lauter, “Quantum resource estimates for computing elliptic curve discrete logarithms,” in ASIACRYPT, 2017 (cit. p. 8). [RPL12] H. S. Rhee, J. H. Park, and D. H. Lee, “Generic construction of designated tester publickey encryption with keyword search,” Inf. Sci., vol. 205, pp. 93–109, 2012 (cit. p. 16). [RPS+09] H. S. Rhee, J. H. Park, W. Susilo, and D. H. Lee, “Improved searchable public key encryption with designated tester,” in ASIACCS, 2009 (cit. pp. 4, 16). [RPS+10] ——, “Trapdoor security in a searchable publickey encryption scheme with a designated tester,” J. Syst. Softw., vol. 83, no. 5, pp. 763–771, 2010 (cit. pp. 4, 16). [RSA78] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtaining digital signatures and publickey cryptosystems,” Commun. ACM, vol. 21, no. 2, pp. 120–126, 1978 (cit. p. 2). [RSA83] ——, “A method for obtaining digital signatures and publickey cryptosystems (reprint),” Commun. ACM, vol. 26, no. 1, pp. 96–99, 1983 (cit. p. 2). [RSK09] H. S. Rhee, W. Susilo, and H.J. Kim, “Secure searchable public key encryption scheme against keyword guessing attacks,” IEICE Electron. Express, vol. 6, no. 5, pp. 237–243, 2009 (cit. pp. 4, 16). [SBS+21] M. R. Senouci, I. Benkhaddra, A. Senouci, and F. Li, “An efficient and secure certificateless searchable encryption scheme against keyword guessing attacks,” J. Syst. Archit., vol. 119, p. 102 271, 2021 (cit. p. 6). [Sho94a] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms and factoring,” in FOCS, 1994 (cit. pp. 7, 78). [Sho94b] ——, “Polynomial time algorithms for discrete logarithms and factoring on a quantum computer,” in ANTS, 1994 (cit. pp. 7, 78). [Sho99] ——, “Polynomialtime algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM Rev., vol. 41, no. 2, pp. 303–332, 1999 (cit. pp. 7, 78). [SLC+21] Q. Song, Z. Liu, J. Cao, et al., “SAPSSE: protecting search patterns and access patterns in searchable symmetric encryption,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 1795–1809, 2021 (cit. p. 3). [SPK+18] C. Stergiou, K. E. Psannis, B.G. Kim, and B. B. Gupta, “Secure integration of IoT and cloud computing,” Future Gener. Comput. Syst., vol. 78, pp. 964–975, 2018 (cit. p. 2). [SS11] D. Stehle and R. Steinfeld, “Making NTRU as secure as worstcase problems over ideal lattices,” in EUROCRYPT, 2011 (cit. p. 25). [SS17] V. Saraswat and R. A. Sahu, “Short integrated PKE+PEKS in standard model,” in SPACE, 2017 (cit. p. 14). [SSS+19] V. Saraswat, R. A. Sahu, G. Sharma, V. Kuchta, and O. Markowitch, “Publickey encryption with integrated keyword search,” J. Hardw. Syst. Secur., vol. 3, no. 1, pp. 12–25, 2019 (cit. p. 14). [SWP00] D. X. Song, D. A. Wagner, and A. Perrig, “Practical techniques for searches on encrypted data,” in IEEE S&P, 2000 (cit. p. 3). [SYL+18] S. Sun, X. Yuan, J. K. Liu, et al., “Practical backwardsecure searchable encryption from symmetric puncturable encryption,” in CCS, 2018 (cit. p. 3). [TC09] Q. Tang and L. Chen, “Publickey encryption with registered keyword search,” in EuroPKI, 2009 (cit. p. 17). [TJA10] H. Takabi, J. B. D. Joshi, and G.J. Ahn, “Security and privacy challenges in cloud computing environments,” IEEE Secur. Priv., vol. 8, no. 6, pp. 24–31, 2010 (cit. p. 2). [TMC15] Q. Tang, H. Ma, and X. Chen, “Extend the concept of public key encryption with delegated search,” Comput. J., vol. 58, no. 4, pp. 724–734, 2015 (cit. p. 14). [Wat05] B. Waters, “Efficient identitybased encryption without random oracles,” in EUROCRYPT, 2005 (cit. p. 6). [WAW16] T. Wang, M. H. Au, and W. Wu, “An efficient secure channel free searchable encryption scheme with multiple keywords,” in NSS, 2016 (cit. p. 17). [WCX+21] P. Wang, B. Chen, T. Xiang, and Z. Wang, “Latticebased public key searchable encryption with finegrained access control for edge computing,” Future Gener. Comput. Syst., 2021 (cit. p. 21). [WCZ+18] L. Wu, B. Chen, S. Zeadally, and D. He, “An efficient and secure searchable public key encryption scheme with privacy protection for cloud storage,” Soft Comput., vol. 22, no. 23, pp. 7685–7696, 2018 (cit. pp. 5, 45, 98). [WMS+12] W. Wu, Y. Mu, W. Susilo, X. Huang, and L. Xu, “A provably secure construction of certificatebased encryption from certificateless encryption,” Comput. J., vol. 55, no. 10, pp. 1157–1168, 2012 (cit. p. 6). [WTT14] T.Y. Wu, T.T. Tsai, and Y.M. Tseng, “Efficient searchable IDbased encryption with a designated server,” Ann. des Telecommunications, vol. 69, no. 78, pp. 391–402, 2014 (cit. p. 17). [WvLY+10] L. Wang, G. von Laszewski, A. J. Younge, et al., “Cloud computing: A perspective study,” New Gener. Comput., vol. 28, no. 2, pp. 137–146, 2010 (cit. p. 2). [WWR+12] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, “Toward secure and dependable storage services in cloud computing,” IEEE Trans. Serv. Comput., vol. 5, no. 2, pp. 220–232, 2012 (cit. p. 2). [WXL+20] P. Wang, T. Xiang, X. Li, and H. Xiang, “Public key encryption with conjunctive keyword search on lattice,” J. Inf. Secur. Appl., vol. 51, p. 102 433, 2020 (cit. p. 20). [WZ11] W. Wu and L. Zhang, “LBlock: A lightweight block cipher,” in ACNS, 2011 (cit. p. 2). [WZM+19] L. Wu, Y. Zhang, M. Ma, N. Kumar, and D. He, “Certificateless searchable public key authenticated encryption with designated tester for cloudassisted medical Internet of things,” Ann. des Telecommunications, vol. 74, no. 78, pp. 423–434, 2019 (cit. pp. 5, 6, 20, 46, 98, 99, 102, 103). [XHW+18] P. Xu, S. He, W. Wang, W. Susilo, and H. Jin, “Lightweight searchable publickey encryption for cloudassisted wireless sensor networks,” IEEE Trans. Ind. Informatics, vol. 14, no. 8, pp. 3712–3723, 2018 (cit. p. 15). [XJW+13] P. Xu, H. Jin, Q. Wu, and W. Wang, “Publickey encryption with fuzzy keyword search: A provably secure scheme under keyword guessing attack,” IEEE Trans. Computers, vol. 62, no. 11, pp. 2266–2277, 2013 (cit. p. 17). [XLC+19] L. Xu, J. Li, X. Chen, et al., “TcPEDCKS: Towards time controlled public key encryption with delegatable conjunctive keyword search for Internet of things,” J. Netw. Comput. Appl., vol. 128, pp. 11–20, 2019 (cit. p. 15). [XLZ+20] L. Xu, W. Li, F. Zhang, R. Cheng, and S. Tang, “Authorized keyword searches on public key encrypted data with time controlled keyword privacy,” IEEE Trans. Inf. Forensics Secur., vol. 15, pp. 2096–2109, 2020 (cit. pp. 14, 15). [XYS+19] L. Xu, X. Yuan, R. Steinfeld, C. Wang, and C. Xu, “Multiwriter searchable encryption: An LWEbased realization and implementation,” in ASIACCS, 2019 (cit. p. 20). [YDG+21] Y. Yang, R. Deng, W. Guo, et al., “Dual traceable distributed attributebased searchable encryption and ownership transfer,” IEEE Trans. Cloud Comput., 2021 (cit. p. 15). [YNY+14] Y. Yu, J. Ni, H. Yang, Y. Mu, and W. Susilo, “Efficient public key encryption with revocable keyword search,” Secur. Commun. Networks, vol. 7, no. 2, pp. 466–472, 2014 (cit. p. 14). [YPH+13] W.C. Yau, R. C.W. Phan, S.H. Heng, and B.M. Goi, “Keyword guessing attacks on secure searchable public key encryption schemes with a designated tester,” Int. J. Comput. Math., vol. 90, no. 12, pp. 2581–2587, 2013 (cit. p. 16). [YSL+20] Y. Yu, J. Shi, H. Li, et al., “Keypolicy attributebased encryption with keyword search in virtualized environments,” IEEE J. Sel. Areas Commun., vol. 38, no. 6, pp. 1242–1251, 2020 (cit. p. 15). [Zha19] M. Zhandry, “How to record quantum queries, and applications to quantum indifferentiability,” in CRYPTO, 2019 (cit. p. 133). [ZI07] R. Zhang and H. Imai, “Generic combination of public key encryption with keyword search and public key encryption,” in CANS, 2007 (cit. p. 14). [ZL12] D. Zissis and D. Lekkas, “Addressing cloud computing security issues,” Future Gener. Comput. Syst., vol. 28, no. 3, pp. 583–592, 2012 (cit. p. 2). [ZLW+21] K. Zhang, J. Long, X. Wang, et al., “Lightweight searchable encryption protocol for industrial Internet of things,” IEEE Trans. Ind. Informatics, vol. 17, no. 6, pp. 4248–4259, 2021 (cit. p. 15). [ZM16] J. Zhang and J. Mao, “Efficient public key encryption with revocable keyword search in cloud computing,” Clust. Comput., vol. 19, no. 3, pp. 1211–1217, 2016 (cit. p. 14). [ZQD+21] W. Zhang, B. Qin, X. Dong, and A. Tian, “Publickey encryption with bidirectional keyword search and its application to encrypted emails,” Comput. Stand. Interfaces, vol. 78, p. 103 542, 2021 (cit. p. 15). [ZSL+19] C. Zuo, S. Sun, J. K. Liu, J. Shao, and J. Pieprzyk, “Dynamic searchable symmetric encryption with forward and stronger backward privacy,” in ESORICS, 2019 (cit. p. 3). [ZTW+19] X. Zhang, Y. Tang, H. Wang, et al., “Latticebased proxyoriented identitybased encryption with keyword search for cloud storage,” Inf. Sci., vol. 494, pp. 193–207, 2019 (cit. pp. 106, 118–121, 125, 127–129). [ZWD+20] H.S. Zhong, H. Wang, Y.H. Deng, et al., “Quantum computational advantage using photons,” Science, vol. 370, no. 6523, pp. 1460–1463, 2020 (cit. p. 7). [ZXA14] Q. Zheng, S. Xu, and G. Ateniese, “VABKS: Verifiable attributebased keyword search over outsourced encrypted data,” in INFOCOM, 2014 (cit. p. 15). [ZXN+19] Y. Zhang, C. Xu, J. Ni, H. Li, and X. S. Shen, “Blockchainassisted publickey encryption with keyword search against keyword guessing attacks for cloud storage,” IEEE Trans. Cloud Comput., 2019 (cit. pp. 5, 45, 98). [ZXW+21] X. Zhang, C. Xu, H. Wang, Y. Zhang, and S. Wang, “FSPEKS: Latticebased forward secure publickey encryption with keyword search for cloudassisted industrial Internet of things,” IEEE Trans. Dependable Secur. Comput., vol. 18, no. 3, pp. 1019–1032, 2021 (cit. pp. 20, 106, 118–122, 124, 128, 129). [ZZ11] B. Zhang and F. Zhang, “An efficient public key encryption with conjunctivesubset keywords search,” J. Netw. Comput. Appl., vol. 34, no. 1, pp. 262–267, 2011 (cit. p. 15). 
描述:  博士 國立政治大學 資訊科學系 108753501 
資料來源:  http://thesis.lib.nccu.edu.tw/record/#G0108753501 
数据类型:  thesis 
显示于类别:  [資訊科學系] 學位論文

文件中的档案:
档案 
描述 
大小  格式  浏览次数 
350101.pdf   7804Kb  Adobe PDF  2  检视/开启 

在政大典藏中所有的数据项都受到原著作权保护.
