English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 109952/140891 (78%)
Visitors : 46236728      Online Users : 940
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/149644
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/149644


    Title: YouTube政治頻道異常使用者行為探勘
    Detecting Abnormal User Behavior over YouTube Political Channels
    Authors: 張恩慈
    Chang, En-Cih
    Contributors: 沈錳坤
    Shan, Man-Kwan
    張恩慈
    Chang, En-Cih
    Keywords: 異常帳號
    立場分析
    時序探勘
    共謀關係
    Date: 2023
    Issue Date: 2024-02-01 11:40:13 (UTC+8)
    Abstract: 隨著社群媒體的日漸興盛,Facebook、Instagram、Twitter、Tiktok等社群軟體儼然成為人們日常生活中不可或缺的社交工具,其中YouTube更是全世界每日流量最高的影片串流平台。
    社群平台進而成為行銷業者維持正面形象、提升曝光度的手段。政治勢力也開始在社群平台上宣傳政見和理念,尋求更廣泛的支持者。意想不到的後果是,社群媒體上不正常的活動漸漸萌芽,公關公司開始透過網軍,以人為的方式增加影片觀看次數、點讚、給予正面的評論及衝高頻道訂閱數,也運用經營的非真人帳號在文章或影片下留言,激起熱衷粉絲情緒性留言,也試圖帶動群眾意見風向。
    近年來已陸續有社群平台異常帳號之研究。但YouTube與一般社群平台不同,影片內容不易分析,影片下方的留言討論不似一般社群平台即時且熱烈,且YouTube 站方沒有公開影片及留言按讚或按噓的帳號,提高了異常帳號分析的挑戰性。也因此現有YouTube 異常帳號的研究非常少,多數集中在色情暴力或盜版影片的偵測。
    本研究旨在透過YouTube平台上公開顯示的欄位資訊,結合時間特徵值及社群帳號活動關聯性,提出異常帳號探勘的方法。本論文在大量政治相關頻道的評論樣本獲取使用者當中的隱含知識,並透過評論時間及獲得其他使用者之回饋,分析YouTube政治相關頻道立場及挖掘潛在的異常使用者同夥行為,作為政治頻道的生態探討。
    Reference: [1] Aiyar, S., & Shetty, N. P. (2018). N-Gram Assisted Youtube Spam Comment Detection. International Conference on Computational Intelligence and Data Science (ICCIDS). Gurugram, India.
    [2] Alassad, M., Agarwal, N., & Hussain, M. N. (2019). Examining Intensive Groups in YouTube Commenter Networks. In Social, Cultural, and Behavioral Modeling. Washington, DC, USA: Springer.
    [3] Alberto, T. C., Lochter, J. V., & Almeida, T. A. (2015). TubeSpam: Comment Spam Filtering on YouTube. 14th International Conference on Machine Learning and Applications (ICMLA). Miami, FL, USA.
    [4] Alharbi, A., Dong, H., Yi, X., Tari, Z., & Khalil, I. (2021). Social Media Identity Deception Detection: A Survey. ACM Computing Surveys, Vol. 54, No. 3.
    [5] Bond, R. & Messing, S. (2015). Quantifying Social Media’s Political Space: Estimating Ideology from Publicly Revealed Preferences on Facebook. American Political Science Review, Vol. 109, No. 1.
    [6] Chowdury, R., Adnan, M. N., Mahmud, G. A., & Rahman, R. M. (2013). A Data Mining Based Spam Detection System for YouTube. Eighth International Conference on Digital Information Management (ICDIM). Islamabad, Pakistan.
    [7] Dutta, H. S., Jobanputra, M., Negi, H., & Chakraborty, T. (2021). Detecting and Analyzing Collusive Entities on YouTube. ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 5.
    [8] Ferrara, E., Varol, O., Davis, C., Menczer, F., & Flammini, A. (2016). The Rise of Social Bots. Communications of the ACM, Vol. 59, No. 7.
    [9] Hussain, M. N., Tokdemir, S., Agarwal , N., & Al-khateeb, S. (2018). Analyzing Disinformation and Crowd Manipulation Tactics on YouTube. IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). Barcelona, Spain.
    [10] Kaushal, R., Saha, S., Bajaj, P., & Kumaraguru, P. (2016). KidsTube: Detection, Characterization and Analysis of Child Unsafe Content & Promoters on YouTube. 14th Annual Conference on Privacy, Security and Trust (PST). Auckland, New Zealand.
    [11] Korn, F., Labrinidis, A., Kotidis, Y., & Faloutsos C. (2000). Quantifiable Data Mining Using Ratio Rules. The VLDB Journal, Vol. 8.
    78
    [12] Singh, S., Kaushal, R., Buduru, A. B., & Kumaraguru, P. (2019). KidsGUARD: Fine Grained Approach for Child Unsafe Video Representation and Detection. Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing (SAC). Limassol, Cyprus.
    [13] Varol, O., Ferrara , E., Davis, C. A., Menczer, F., & Flammini, A. (2017). Online Human-Bot Interactions: Detection, Estimation, and Characterization. Proceedings of the International AAAI Conference on Web and Social Media. Proceedings of the International AAAI Conference on Web and Social Media.
    [14] Yusof, Y., & Sadoon, O. H. (2017). Detecting Video Spammers in YouTube Social Media. Proceedings of the 6 th International Conference on Computing and Informatics (ICOCI). Kuala Iumpur, Malaysia.
    Description: 碩士
    國立政治大學
    資訊科學系
    109753109
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109753109
    Data Type: thesis
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    310901.pdf3594KbAdobe PDF1View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback