English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 110442/141355 (78%)
Visitors : 46986632      Online Users : 946
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/150171
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/150171


    Title: 以圖神經網路將 2.5D 樂高建構映射至平鋪問題之方法
    Mapping 2.5D Lego Construction into Tiling Problem with Graph Neural Network
    Authors: 黃威
    Huang, Wei
    Contributors: 紀明德
    Chi, Ming-Te
    黃威
    Huang, Wei
    Keywords: 樂高
    圖神經網路
    超像素問題
    LEGO
    Graphic neural network,
    Superpixel
    Date: 2024
    Issue Date: 2024-03-01 13:42:18 (UTC+8)
    Abstract: 樂高公司以積木的多樣性深受大人和小孩喜愛,隨著模型複雜度
    的增加,人們對樂高模型的組裝有了更高的要求。以樂高浮雕系列為
    例,模型以其高度立體的設計和細緻的細節而聞名,處理複雜的三維
    空間和結構問題上的能力,使組裝過程更具挑戰性。
    本研究著重在處理樂高浮雕系列的複雜性。在這一過程中,我們
    需要克服積木的幾何形狀、分層架構和結構強度等多重挑戰,同時必
    須在有限的樂高磚資源下實現豐富多樣的創意。為了解決這些問題,
    我們採用了三項關鍵技術:圖像分層、樂高生成技術與相似度量化分
    析。首先,透過圖像分層技術,我們得以細緻地將輸入圖像分為前景
    和背景,深入切分圖像中的細節,進而突顯更多層次的圖像細節。其
    次,我們應用樂高生成技術,在區域內最大化平鋪樂高磚,確保模型
    的結構穩固,同時解決超像素問題。最後,我們運用相似度量化分析
    演算法來比較生成的模型和原始輸入圖像的相似度,全面評估和比較
    各種模型的表現。這項分析不僅確保了模型的忠實還原,同時也為我
    們提供了改進的空間,以進一步提高模型的精確度和真實感。這些技
    術的綜合應用為樂高浮雕系列的設計提供了全新的方法和解決方案,
    進一步滿足了樂高愛好者的多樣性。
    The LEGO company’s diverse building blocks are loved by both adults
    and children. As models become more complex, there are higher demands
    for assembling LEGO models. For example, the LEGO relief series, known
    for its intricate three-dimensional design , presents challenges in handling
    complex spatial and structural issues.
    Our study focuses on addressing the complexity of the LEGO relief series. We employ three key technologies: image segmentation, LEGO generation techniques, and similarity quantification analysis. Image segmentation divides input images into foreground and background, emphasizing more
    layers of detail. LEGO generation techniques maximize brick placement for
    structural stability while solving the superpixel problem. Similarity quantification analysis ensures faithful reproduction of models and provides room
    for improvement.By applying these technologies, we offer new methods and
    solutions for designing LEGO relief series, catering to the diverse interests of
    LEGO enthusiasts.
    Reference: [1] LEGO® Starry Night. https://www.lego.com/zh-tw/categories/adults-welcome/
    article/details-of-van-gogh-starry-night.
    [2] LEGO® Great Wave. https://www.lego.com/zh-tw/categories/adults-welcome/
    article/how-we-made-the-lego-great-wave.
    [3] LEGO® Wind God and Thunder God Screens. https://toymim.com/review/
    lego-store-narita-airport-report-2020-01.
    [4] A. Rivers, T. Igarashi, and F. Durand, “2.5 d cartoon models,” ACM Transactions
    on Graphics (TOG), vol. 29, no. 4, pp. 1–7, 2010.
    [5] H. Xu, K. H. Hui, C.-W. Fu, and H. Zhang, “Tilingnn: learning to tile with selfsupervised graph neural network,” arXiv preprint arXiv:2007.02278, 2020.
    [6] LEGO® Brick Modified . https://rebrickable.com/parts/87087/
    brick-special-1-x-1-with-stud-on-1-side/.
    [7] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun, “Towards robust
    monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
    2020.
    43
    [8] R. Ranftl, A. Bochkovskiy, and V. Koltun, “Vision transformers for dense prediction,” ArXiv preprint, 2021.
    [9] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive
    survey on graph neural networks,” IEEE transactions on neural networks and
    learning systems, vol. 32, no. 1, pp. 4–24, 2020.
    [10] L. Sacht, “Structure-aware bottle cap art,” Computers & Graphics, vol. 107, pp.
    277–288, 2022.
    [11] J. Allebach and P. W. Wong, “Edge-directed interpolation,” in Proceedings of 3rd
    IEEE International Conference on Image Processing, vol. 3. IEEE, 1996, pp.
    707–710.
    [12] R. E. Carlson and F. N. Fritsch, “Monotone piecewise bicubic interpolation,”
    SIAM journal on numerical analysis, vol. 22, no. 2, pp. 386–400, 1985.
    [13] 翁瑋辰, “具樂高平滑化之影像樂高風格化技術,” 2019.
    [14] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of
    the IEEE international conference on computer vision, 2017, pp. 2961–2969.
    [15] 王祥宇, “以圖神經網路將二維樂高建構映射至平鋪問題之方法,” 2022.
    [16] P. Lei, S. Xu, and S. Zhang, “An art-oriented pixelation method for cartoon images,” The Visual Computer, pp. 1–13, 2023.
    [17] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable
    effectiveness of deep features as a perceptual metric,” in Proceedings of the IEEE
    conference on computer vision and pattern recognition, 2018, pp. 586–595.
    44
    [18] R. Gower, A. Heydtmann, and H. Petersen, “Lego: Automated model construction,” 1998.
    [19] M.-H. Kuo, Y.-E. Lin, H.-K. Chu, R.-R. Lee, and Y.-L. Yang, “Pixel2brick: Constructing brick sculptures from pixel art,” in Computer Graphics Forum, vol. 34,
    no. 7. Wiley Online Library, 2015, pp. 339–348.
    [20] S.-J. Luo, Y. Yue, C.-K. Huang, Y.-H. Chung, S. Imai, T. Nishita, and B.-Y.
    Chen, “Legolization: Optimizing lego designs,” ACM Transactions on Graphics
    (TOG), vol. 34, no. 6, pp. 1–12, 2015.
    [21] H. Xu, K.-H. Hui, C.-W. Fu, and H. Zhang, “Computational lego technic design,”
    arXiv preprint arXiv:2007.02245, 2020.
    [22] K. Lennon, K. Fransen, A. O’Brien, Y. Cao, M. Beveridge, Y. Arefeen, N. Singh,
    and I. Drori, “Image2lego: customized lego set generation from images,” arXiv
    preprint arXiv:2108.08477, 2021.
    [23] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE transactions on image
    processing, vol. 13, no. 4, pp. 600–612, 2004.
    [24] M.-R. Huang and R.-R. Lee, “Pixel art color palette synthesis,” in Information
    Science and Applications. Springer, 2015, pp. 327–334.
    [25] LEGO® Brick. https://brickhub.org.
    Description: 碩士
    國立政治大學
    資訊科學系
    110753159
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110753159
    Data Type: thesis
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    315901.pdf19101KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback