| 參考文獻: | [1] Chalkidis, I., Fergadiotis, M., Malakasiotis, P., Aletras, N., & Androutsopoulos, I. (2020). LEGAL-BERT: The muppets straight out of law school. arXiv preprint arXiv:2010.02559.
[2] Han, X., Sun, T., Chen, P., & Kuang, K. (2022). Ptr: Prompt tuning with rules for text classification. AI Open, 3, 182–192.
[3] Jiang, C., & Yang, X. (2023). Legal syllogism prompting: Teaching large language models for legal judgment prediction. In Proceedings of the Nineteenth International Conference on Artificial Intelligence and Law (pp. 417–421).
[4] Katz, D. M., Bommarito, M. J., & Blackman, J. (2017). A general approach for predicting the behavior of the Supreme Court of the United States. PLoS ONE, 12(4), e0174698.
[5] Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., & Iwasawa, Y. (2022). Large language models are zero-shot reasoners. In Advances in Neural Information Processing Systems, 35, 22199–22213.
[6] Medvedeva, M., Vols, M., & Wieling, M. (2018). Judicial decisions of the European Court of Human Rights: Looking into the crystal ball. In Proceedings of the Conference on Empirical Legal Studies (p. 24).
[7] Medvedeva, M., & McBride, P. (2023, December). Legal judgment prediction: If you are going to do it, do it right. In Proceedings of the Natural Legal Language Processing Workshop 2023 (pp. 73–84).
[8] Sartor, G., Palmirani, M., Rubino, R., & Pagallo, U. (2022). Thirty years of Artificial Intelligence and Law: The second decade. Artificial Intelligence and Law, 30(4), 521–557. 46
[9] Santosh, T. Y. S., Staliūnas, A., Medvedeva, M., & Wieling, M. (2022). Deconfounding legal judgment prediction for European court of human rights cases towards better alignment with experts. arXiv preprint arXiv:2210.13836.
[10] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E., Le, Q., & Zhou, D. (2022). Chain-of-thought prompting elicits reasoning in large language models. In Advances in Neural Information Processing Systems, 35, 24824–24837.
[11] Yu, F., Quartey, L., & Schilder, F. (2022). Legal prompting: Teaching a language model to think like a lawyer. arXiv preprint arXiv:2212.01326.
[12] 黃詩淳; 邵軒磊. 以人工智慧讀取親權酌定裁判文本: 自然語言與文字探勘之實踐. 2020, 49.1:196-224.
[13] 黃詩淳; 邵軒磊. 酌定子女親權之重要因素: 以決策樹方法分析相關裁判. 臺大法學論叢, 2018, 47.1: 299-344.
[14] 黃詩淳。人工智慧對民事程序之影響。臺灣人工智慧行動網,人工智慧與法律規範學術研究群,第十一次會議。2020年五月廿八日。
[15] 王道維:當AI 科技應用於司法審判—以量刑預測、民刑事見解資料庫及家事親權案件調解為例。中央研究院,公共性與AI 論壇(三十三)。2024 年,七月卅一日。http://ai.iias.sinica.edu.tw/when-ai-is-used-in-judicial-adjudication-minutes/
[16] 許澤天,《刑法分則》(第4版),臺北:新學林出版社,2022
[17] 林鈺雄,《新刑法總則》(第5版),臺北:元照出版社,2016。
[18] 謝淳達,〈利用詞組檢索中文訴訟文書之研究〉,臺北:國立政治大學資訊科學系碩士論文,2005。47
[19] 藍家樑,〈中文訴訟文書檢索系統雛形實作〉,臺北:國立政治大學資訊科學系碩士論文,2008。
[20] 曹錫璋,〈基於深度學習模型之判決書情境相似檢索技術〉,臺中:國立中興大學資訊科學與工程學系碩士論文,2021。
[21] 蔡聖偉,〈想像競合從重處斷與輕罪的併科罰金──評最高法院111 年度台上字第977 號刑事判決〉,收入《月旦法學雜誌》,202407(350 期),頁6-23。 |