English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 116896/147927 (79%)
Visitors : 64552970      Online Users : 6512
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/157226


    Title: 經顱直流電刺激對皮質區神經傳導物質的影響
    The effect of Transcranial Direct Current Stimulation on the cortical neurotransmitter level
    Authors: 張郁傑
    Chang, Yu-Chieh
    Contributors: 蔡尚岳
    Tsai, Shang-Yueh
    張郁傑
    Chang, Yu-Chieh
    Keywords: 經顱直流電刺激
    γ-胺基丁酸
    磁共振頻譜
    Transcranial Direct Current Stimulation
    Gamma-aminobutyric acid
    Magnetic resonance spectroscopy
    Date: 2025
    Issue Date: 2025-06-02 14:43:08 (UTC+8)
    Abstract: 本研究旨在探討經顱直流電刺激(tDCS)對成人大腦γ-胺基丁酸(GABA)濃度的短期和長期之影響。隨著tDCS在神經科學領域中的廣泛應用,了解其對大腦神經傳導物質的影響至關重要。研究中,陽極電極放置於左腦初級運動皮層,陰極放置於右腦前額葉皮質,並使用磁共振頻譜(MRS)技術掃描大腦,以觀察GABA濃度的變化,MRS掃描數據通過MEGA-PRESS編輯序列獲得,隨後使用MATLAB內的Gannet套件進行MRS數據處理和分析的步驟。受試者被分為陽極刺激組和假刺激組,而陽極刺激組還進一步細分為Top組和Bottom組,Top和Bottom組的區別在於電流的流動方向,雖然兩組的陽極電極都放置於左側初級運動皮層(M1),但電線的佈置方式有所不同,Top組的電線安排使得電流從上方流向大腦皮層表層,而Bottom組的電線安排則使電流從下方流向大腦皮層,目的是要探討不同電流流向的效果。研究結果顯示,tDCS在短期內顯著提升了GABA濃度,尤其在Top組和右側大腦中效果更為顯著。然而,長期觀察顯示,GABA濃度逐漸回到初始水平,暗示短期影響並未持續,這些發現為未來tDCS應用的研究提供了重要參考。
    This study aims to investigate the short-term and long-term effects of transcranial direct current stimulation (tDCS) on gamma-aminobutyric acid (GABA) concentrations in the adult brain. With the extensive application of tDCS in the field of neuroscience, understanding its impact on neurotransmitter levels is crucial. In this research, the anodal electrode was placed over the left primary motor cortex (M1), while the cathodal electrode was positioned on the right prefrontal cortex. Magnetic resonance spectroscopy (MRS) was employed to measure changes in GABA concentrations, with MRS data acquired using the MEGA-PRESS editing sequence and analyzed through the Gannet toolbox in MATLAB. Participants were divided into anodal stimulation and sham groups, and the anodal stimulation group was further subdivided into Top and Bottom groups. The distinction between the Top and Bottom groups was based on the direction of current flow.While the anodal electrode in both subgroups was placed on the left M1, the electrode wire arrangement differed: the Top group directed the current from above the cortical surface, and the Bottom group directed it from below. The goal was to explore the effects of varying current directions. Results revealed that tDCS significantly increased GABA concentrations in the short term, particularly in the Top group and in the right hemisphere. However, long-term observations indicated that GABA levels gradually returned to baseline, suggesting that short-term effects were not sustained. These findings provide critical insights for future research into tDCS applications.
    Reference: [1] Brunoni, A. R., Nitsche, M. A., Bolognini, N., Bikson, M., Wagner, T., Merabet, L., Edwards, D. J., Valero-Cabré, A., Rotenberg, A., Pascual-Leone, A., Ferrucci, R., Priori, A., Boggio, P. S., & Fregni, F. (2012). Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimulation, 5(3), 175–195.
    [2] Yook, S. W., Park, S. H., Seo, J. H., Kim, S. J., & Ko, M. H. (2011). Suppression of seizure by cathodal transcranial direct current stimulation in an epileptic patient – A case report. Annals of Rehabilitation Medicine, 35(4), 579–582.
    [3] Kuo, M. F., & Nitsche, M. A. (2012). Effects of transcranial electrical stimulation on cognition. Clinical EEG and Neuroscience, 43(3), 192–199.
    [4] Bachtiar, V., Near, J., Johansen-Berg, H., & Stagg, C. J. (2015). Modulation of GABA and resting state functional connectivity by transcranial direct current stimulation. eLife, 4, e08789.
    [5] Stagg, C. J., & Nitsche, M. A. (2011). Physiological basis of transcranial direct current stimulation. The Neuroscientist, 17(1), 37–53.
    [6] Luscher, B., Shen, Q., & Sahir, N. (2011). The GABAergic deficit hypothesis of major depressive disorder. Molecular Psychiatry, 16(4), 383–406.
    [7] Nemeroff, C. B. (2003). The role of GABA in the pathophysiology and treatment of anxiety disorders. Psychopharmacology Bulletin, 37(4), 133–146.
    [8] Treiman, D. M. (2001). GABAergic mechanisms in epilepsy. Epilepsia, 42(Suppl. 3), 8–12.
    [9] Lu, J., Sherman, D., Devor, M., & Saper, C. B. (2006). A putative flip-flop switch for control of REM sleep. Nature, 441(7093), 589–594.
    [10] Tiagabine: efficacy and safety in partial seizures – current status. (2008). Neuropsychiatric Disease and Treatment, 4(2), 15–23.
    [11] Zhang, Y., Shen, J., & Lin, Y. (2018). Simultaneous Measurement of Glutamate, Glutamine, GABA, and Glutathione by Spectral Editing Without Subtraction. Magnetic Resonance in Medicine, 80(5), 1378–1389
    [12] Mullins, P. G., McGonigle, D. J., O’Gorman, R. L., Puts, N. A. J., Vidyasagar, R., Evans, C. J., Edden, R. A. E., & the GABA-MRS Consortium. (2014). Current practice in the use of MEGA-PRESS spectroscopy for the detection of GABA. NeuroImage, 86, 43–52.
    [13] Tremblay, S., Beaulé, V., Lepage, J.-F., & Théoret, H. (2013). Anodal transcranial direct current stimulation modulates GABAB-related intracortical inhibition in the M1 of healthy individuals. NeuroReport, 24(1), 46–50.
    [14] Kim, S., Stephenson, M. C., Morris, P. G., & Jackson, S. R. (2014). tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: A 7 T magnetic resonance spectroscopy study. NeuroImage, 99, 237–243.
    [15] Edden, R. A., et al. (2014). Gannet: A batch-processing tool for GABA-edited MR spectroscopy. NeuroImage, 61(4), 1123-1132.
    [16] Nachar, N. (2008). The Mann-Whitney U: A test for assessing whether two independent samples come from the same distribution. Tutorials in Quantitative Methods for Psychology, 4(1), 13-20.
    [17] Stagg, C. J., Bachtiar, V., & Johansen-Berg, H. (2011). The role of GABA in human motor learning. Current Biology, 21(6), 480–484.
    Description: 碩士
    國立政治大學
    應用物理研究所
    110755007
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110755007
    Data Type: thesis
    Appears in Collections:[應用物理研究所 ] 學位論文

    Files in This Item:

    File SizeFormat
    500701.pdf1494KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback