Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/157659
|
Title: | 壓力下睡眠脆弱特質與自主神經反應歷程之關係:以誘發壓力反應和夜間擾醒探討 The Association between Stress-related Sleep Vulnerability and ANS Reaction Process: An Investigation with Induced Stress Reaction and Nocturnal Arousal |
Authors: | 李語荃 Li, Yu-Chuan |
Contributors: | 楊建銘 Yang, Chien-Ming 李語荃 Li, Yu-Chuan |
Keywords: | 睡眠脆弱特質 壓力反應性 壓力恢復性 自主神經激發 Stress-related sleep vulnerability Stress reactivity Stress recovery Nocturnal autonomic arousal |
Date: | 2025 |
Issue Date: | 2025-07-01 14:12:29 (UTC+8) |
Abstract: | 研究目的:壓力下睡眠脆弱特質(stress-related sleep vulnerability)指的是個體在面對壓力事件時,其睡眠易受到干擾的程度,被視為失眠發展歷程中重要的前置因子。本研究主要目的在探討高與低睡眠脆弱特質的個體在面對日間壓力與夜間擾醒情境時,自主神經系統的反應性與恢復性歷程差異,並進一步分析日間與夜間的自主神經反應歷程是否具有一致性,以了解其是否為一種穩定的生理特質,以期作為失眠風險的潛在指標。 研究方法:本研究以福特壓力下失眠反應量表(Ford Insomnia Response to Stress Test, FIRST)作為睡眠脆弱特質的測量,篩選得分大於23分的高FIRST組受試者19名,與得分低於18分的低FIRST組受試者21名。受試者於實驗前配戴睡眠腕錶並填寫三天睡眠日誌,維持規律作息,實驗當日,會先進行心理生理壓力反應測量(Psychophysiological Stress Profile, PSP),記錄心率與心跳變異率(heart rate variability, HRV)指標以觀察壓力反應歷程,而後受試者進行多向度睡眠生理記錄,並在整夜睡眠中透過播放遞增的聲音刺激誘發擾醒,進一步分析擾醒後的自主神經激發反應性與恢復性。本研究比較兩組在日間與夜間自主神經反應歷程的差異,並分析其間的關聯,以探討自主神經反應歷程是否具穩定的特質性。 研究結果:壓力反應測量中,兩組在壓力反應性和壓力恢復性的心率及心跳變異率的高頻功率(high-frequency power, HF)、低/高頻比(LF/HF ratio)等指標上皆無顯著差異。在夜間睡眠中,高FIRST組於非快速動眼期(non-rapid-eye-movement, NREM)的心跳反應峰值顯著高於低FIRST組,但以曲線下面積量化自主神經激發反應性時,兩組無顯著差異;相對地,在以AUC量化的自主神經激發恢復性方面,高FIRST組顯著高於低FIRST組,顯示其在夜間擾醒時自主神經恢復能力較差。此外,研究亦發現,高FIRST組的壓力反應性(以心率為指標)與夜間自主神經激發反應性之間具有顯著正相關,顯示自主神經反應具有一定的一致性與特質性。 結論:本研究整合日間與夜間兩種情境,從歷程觀點探討高、低睡眠脆弱特質個體在自主神經反應性與恢復性上的差異,發現高睡眠脆弱特質者於夜間覺醒後呈現較差的自主神經恢復能力,支持其在壓力下可能更易累積生理激發、干擾睡眠穩定性的假設,此外亦發現高睡眠脆弱特質個體經歷日間壓力操弄與夜間擾醒時,心率反應的一致性亦顯示自主神經反應特性可能具有一定特質性,支持自主神經恢復困難的傾向可能為失眠的前置生理特徵,值得未來更多研究探討其在失眠發展歷程的角色以及其作為失眠脆弱因子的生理標記的可能性。 Objectives: Stress-related sleep vulnerability refers to the degree to which an individual’s sleep is susceptible to disruption in response to stress, and is considered a key psychophysiological vulnerability factor in the development of insomnia. This study aimed to investigate differences in autonomic nervous system (ANS) reactivity and recovery between individuals with high and low stress-related sleep vulnerability when exposed to daytime stress and nocturnal arousal. Additionally, it examined whether ANS responses across day and night contexts exhibit consistency, to assess whether such responses represent a stable physiological trait and a potential marker for insomnia vulnerability. Method: This study used the Ford Insomnia Response to Stress Test (FIRST) to assess stress-related sleep vulnerability, selecting 19 participants with scores above 23 as the high FIRST group and 21 participants with scores below 18 as the low FIRST group. Participants wore actigraphies and completed sleep diaries for three consecutive days to maintain regular sleep routines. On the experiment day, they first went through the Psychophysiological Stress Profile (PSP) assessment to measure their stress reactivity and recovery on heart rate (HR) and heart rate variability (HRV) indices. During the subsequent overnight polysomnographic recording, auditory stimuli of increasing intensity were used to induce nocturnal arousals, from which autonomic arousal reactivity and recovery patterns were extracted. Group differences in ANS dynamics across daytime and nighttime conditions were analyzed, along with correlations between responses to explore trait-like consistency. Result: During the PSP assessment, no significant group differences were observed in HR or HRV indices, high-frequency power (HF) and the low-frequency to high-frequency ratio (LF/HF), for either stress reactivity or recovery. During sleep, the high FIRST group exhibited significantly higher peak heart rate during non-rapid-eye-movement (NREM)sleep. However, there were no significant differences in autonomic arousal reactivity when quantified by the area under the curve (AUC). In contrast, in terms of autonomic arousal recovery quantified by AUC, the high-FIRST group showed significantly higher values than the low-FIRST group, indicating poorer autonomic recovery following nocturnal arousal. Moreover, in the high-FIRST group, a significant positive correlation was found between HR stress reactivity and nocturnal autonomic arousal reactivity, suggesting a degree of consistency and trait-like response patterns. Conclusion: By introducing daytime stress and nighttime arousal, this study examines the process of ANS reactivity and recovery in individuals with varying levels of stress-related sleep vulnerability. These findings suggest that individuals with high stress-related sleep vulnerability show poorer recovery of nocturnal autonomic arousal following cortical arousals, which may predispose them to cumulative physiological activation that disrupts sleep stability. The observed consistency in heart rate reactivity across contexts also supports the notion that ANS response patterns may reflect a stable physiological trait. These results support the notion that impaired autonomic recovery may represent a predisposing physiological feature of insomnia and underscore the importance of future research investigating its role in insomnia development and its potential as a biomarker of insomnia vulnerability. |
Reference: | 車先蕙、盧孟良、陳錫中、張尚文、李宇宙(2006)。中文版貝克焦慮量表之信效度。臺灣醫學,10(4),447-454。 林一真(2000)。貝克焦慮量表(BAI)中文版。台北:中國行為科學社。 周映妤(2013).睡眠脆弱特質相關心理機轉探討: 反芻與情緒遲惰特質以及睡前激發狀態的關聯性。國立政治大學心理學研究所。 林詩淳(2007).慢性失眠者與情境性失眠高危險族群之壓力因應與失眠的關係。國立政治大學心理學研究所。 陳心怡(2000)。貝克憂鬱量表第二版(BDI-II)中文版。台北:中國行為科學社。 楊建銘、許世杰、林詩淳、周映妤、陳瑩明(2009)。失眠嚴重度量表中文版的信、效度研究。臨床心理學刊,4(2),95-104。 詹雅雯(2016)。以壓力反應特性、注意力偏誤、與睡眠監控行為探討不同 失眠病程發展之相關因素。﹝博士論文。國立政治大學﹞臺灣博碩士論文知識加值系統。 盧孟良、車先蕙、張尚文、沈武典(民91)。中文版貝克憂鬱量表之信度和效度。台灣精神醫學雜誌。 Agnew Jr., H. W., Webb, W. B., & Williams, R. L. (1966). The First Night Effect: An EEG Study of Sleep. Psychophysiology, 2(3), 263–266. https://doi.org/10.1111/j.1469-8986.1966.tb02650.x Åkerstedt, T., & Folkard, S. (1997). The Three-Process Model of Alertness and Its Extension to Performance, Sleep Latency, and Sleep Length. Chronobiology International. https://doi.org/10.3109/07420529709001149 Allen, A. P., Kennedy, P. J., Cryan, J. F., Dinan, T. G., & Clarke, G. (2014). Biological and psychological markers of stress in humans: Focus on the Trier Social Stress Test. Neuroscience & Biobehavioral Reviews, 38, 94–124. https://doi.org/10.1016/j.neubiorev.2013.11.005 Amatoury, J., Azarbarzin, A., Younes, M., Jordan, A. S., Wellman, A., & Eckert, D. J. (2016). Arousal Intensity is a Distinct Pathophysiological Trait in Obstructive Sleep Apnea. Sleep, 39(12), 2091–2100. https://doi.org/10.5665/sleep.6304 American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed.,text rev.). Washington, DC: Author. (n.d.). Azarbarzin, A., Ostrowski, M., Hanly, P., & Younes, M. (2014). Relationship between Arousal Intensity and Heart Rate Response to Arousal. Sleep, 37(4), 645–653. https://doi.org/10.5665/sleep.3560 Azarbarzin, A., Ostrowski, M., Younes, M., Keenan, B. T., Pack, A. I., Staley, B., & Kuna, S. T. (2015). Arousal Responses during Overnight Polysomnography and their Reproducibility in Healthy Young Adults. Sleep, 38(8), 1313–1321. https://doi.org/10.5665/sleep.4916 Bastien, C. H., Vallières, A., & Morin, C. M. (2001). Validation of the Insomnia Severity Index as an outcome measure for insomnia research. Sleep Medicine, 2(4), 297–307. https://doi.org/10.1016/S1389-9457(00)00065-4 Beck, A. T., Epstein, N., Brown, G., & Steer, R. A. (1988). An inventory for measuring clinical anxiety: Psychometric properties. Journal of Consulting and Clinical Psychology, 56(6), 893–897. https://doi.org/10.1037/0022-006X.56.6.893 Beck, A. T., Steer, R. A., & Brown, G. (1996). Beck Depression Inventory–II (BDI-II) [Database record]. APA PsycTests. (n.d.). Benington, J. H., & Craig Heller, H. (1995). Restoration of brain energy metabolism as the function of sleep. Progress in Neurobiology, 45(4), 347–360. https://doi.org/10.1016/0301-0082(94)00057-O Berry, R., Quan, S. and Abreu, A. (2020) The AASM Manual for the Scoring of Sleep and Associated Events Rules, Terminology and Technical Specifications, Version 2.6. American Academy of Sleep Medicine, Darien. - References—Scientific Research Publishing. (n.d.). Retrieved October 29, 2024, from https://www.scirp.org/reference/referencespapers?referenceid=2768090 Bigalke, J. A., Greenlund, I. M., Nicevski, J. R., Smoot, C. A., Oosterhoff, B., John-Henderson, N. A., & Carter, J. R. (2021). Blunted heart rate recovery to spontaneous nocturnal arousals in short-sleeping adults. American Journal of Physiology-Heart and Circulatory Physiology, 321(3), H558–H566. https://doi.org/10.1152/ajpheart.00329.2021 Bonnet, M. H., & Arand, D. L. (1992). Caffeine Use as a Model of Acute and Chronic Insomnia. Sleep, 15(6), 526–536. https://doi.org/10.1093/sleep/15.6.526 Bonnet, M. H., & Arand, D. L. (1998). Heart rate variability in insomniacs and matched normal sleepers. Psychosomatic Medicine, 60(5), 610–615. https://doi.org/10.1097/00006842-199809000-00017 Bonnet, M. H., & Arand, D. L. (2003). Situational Insomnia: Consistency, Predictors, and Outcomes. Sleep, 26(8), 1029–1036. https://doi.org/10.1093/sleep/26.8.1029 Bonnet, M. H., & Arand, D. L. (2010a). Hyperarousal and insomnia: State of the science. Sleep Medicine Reviews, 14(1), 9–15. https://doi.org/10.1016/j.smrv.2009.05.002 Bonnet, M. H., & Arand, D. L. (2010b). Hyperarousal and insomnia: State of the science. Sleep Medicine Reviews, 14(1), 9–15. https://doi.org/10.1016/j.smrv.2009.05.002 Borbély, A. A. (1982). A two process model of sleep regulation. Human Neurobiology, 1(3), 195–204. Brooker, E. J., Landry, S. A., Thomson, L. D. J., Hamilton, G. S., Genta, P. R., Drummond, S. P. A., & Edwards, B. A. (2023). Obstructive Sleep Apnea Is a Distinct Physiological Endotype in Individuals with Comorbid Insomnia and Sleep Apnea. Annals of the American Thoracic Society, 20(10), 1508–1515. https://doi.org/10.1513/AnnalsATS.202304-350OC Brown, R. E., Basheer, R., McKenna, J. T., Strecker, R. E., & McCarley, R. W. (2012). Control of Sleep and Wakefulness. Physiological Reviews, 92(3), 1087–1187. https://doi.org/10.1152/physrev.00032.2011 Cannon, W. B. (1915). Bodily changes in pain, hunger, fear and rage: An account of recent researches into the function of emotional excitement (pp. xiii, 311). D Appleton & Company. https://doi.org/10.1037/10013-000 Cervena, K., Dauvilliers, Y., Espa, F., Touchon, J., Matousek, M., Billiard, M., & Besset, A. (2004). Effect of cognitive behavioural therapy for insomnia on sleep architecture and sleep EEG power spectra in psychophysiological insomnia. Journal of Sleep Research, 13(4), 385–393. https://doi.org/10.1111/j.1365-2869.2004.00431.x Chen, I. Y., Jarrin, D. C., Ivers, H., & Morin, C. M. (2017). Investigating psychological and physiological responses to the Trier Social Stress Test in young adults with insomnia. Sleep Medicine, 40, 11–22. https://doi.org/10.1016/j.sleep.2017.09.011 Collard, P., Dury, M., Delguste, P., Aubert, G., & Rodenstein, D. O. (1996). Movement arousals and sleep-related disordered breathing in adults. American Journal of Respiratory and Critical Care Medicine, 154(2), 454–459. Scopus. https://doi.org/10.1164/ajrccm.154.2.8756822 da Estrela, C., McGrath, J., Booij, L., & Gouin, J.-P. (2020). Heart Rate Variability, Sleep Quality, and Depression in the Context of Chronic Stress. Annals of Behavioral Medicine: A Publication of the Society of Behavioral Medicine, 55(2), 155–164. https://doi.org/10.1093/abm/kaaa039 da Estrela, C., McGrath, J., Booij, L., & Gouin, J.-P. (2021). Heart Rate Variability, Sleep Quality, and Depression in the Context of Chronic Stress. Annals of Behavioral Medicine: A Publication of the Society of Behavioral Medicine, 55(2), 155–164. https://doi.org/10.1093/abm/kaaa039 Dhabhar, F. S. (2009). Enhancing versus Suppressive Effects of Stress on Immune Function: Implications for Immunoprotection and Immunopathology. Neuroimmunomodulation, 16(5), 300–317. https://doi.org/10.1159/000216188 Dickerson, S. S., & Kemeny, M. E. (2004). Acute Stressors and Cortisol Responses: A Theoretical Integration and Synthesis of Laboratory Research. Psychological Bulletin, 130(3), 355–391. https://doi.org/10.1037/0033-2909.130.3.355 Dorn, L. D., Lucke, J. F., Loucks, T. L., & Berga, S. L. (2007). Salivary cortisol reflects serum cortisol: Analysis of circadian profiles. Annals of Clinical Biochemistry: International Journal of Laboratory Medicine, 44(3), 281–284. https://doi.org/10.1258/000456307780480954 Drake, C. L., Cheng, P., Almeida, D. M., & Roth, T. (2017). Familial Risk for Insomnia Is Associated With Abnormal Cortisol Response to Stress. Sleep, 40(10), zsx143. https://doi.org/10.1093/sleep/zsx143 Drake, C. L., Friedman, N. P., Wright, K. P., & Roth, T. (2011). Sleep Reactivity and Insomnia: Genetic and Environmental Influences. Sleep, 34(9), 1179–1188. https://doi.org/10.5665/SLEEP.1234 Drake, C. L., Scofield, H., & Roth, T. (2008). Vulnerability to insomnia: The role of familial aggregation. Sleep Medicine, 9(3), 297–302. https://doi.org/10.1016/j.sleep.2007.04.012 Drake, C. L., Richardson, G., Roehrs, T., Scofield, H., & Roth, T. (2004). Vulnerability to Stress-related Sleep Disturbance and Hyperarousal. Sleep, 27(2), 285–291. https://doi.org/10.1093/sleep/27.2.285 Droste, S. K., De Groote, L., Atkinson, H. C., Lightman, S. L., Reul, J. M. H. M., & Linthorst, A. C. E. (2008). Corticosterone Levels in the Brain Show a Distinct Ultradian Rhythm but a Delayed Response to Forced Swim Stress. Endocrinology, 149(7), 3244–3253. https://doi.org/10.1210/en.2008-0103 Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation, 93(5), 1043–1065. Espie, C. A. (2002). Insomnia: Conceptual Issues in the Development, Persistence, and Treatment of Sleep Disorder in Adults. Annual Review of Psychology, 53(1), 215–243. https://doi.org/10.1146/annurev.psych.53.100901.135243 Exton, J. H. (1979). Regulation of gluconeogenesis by glucocorticoids. Monographs on Endocrinology, 12, 535–546. https://doi.org/10.1007/978-3-642-81265-1_28 Fernandez-Mendoza, J., Shaffer, M. L., Olavarrieta-Bernardino, S., Vgontzas, A. N., Calhoun, S. L., Bixler, E. O., & Vela-Bueno, A. (2014). Cognitive–emotional hyperarousal in the offspring of parents vulnerable to insomnia: A nuclear family study. Journal of Sleep Research, 23(5), 489–498. https://doi.org/10.1111/jsr.12168 Fernández-Mendoza J., Vela-Bueno A., Vgontzas A. N., Ramos-Platón M. J., Olavarrieta-Bernardino S., Bixler E. O., & De la Cruz-Troca J. J. (2010). Cognitive-Emotional Hyperarousal as a Premorbid Characteristic of Individuals Vulnerable to Insomnia. Psychosomatic Medicine, 72(4), 397. https://doi.org/10.1097/PSY.0b013e3181d75319 Folkman, S., Lazarus, R. S., Dunkel-Schetter, C., DeLongis, A., & Gruen, R. J. (1986). Dynamics of a stressful encounter: Cognitive appraisal, coping, and encounter outcomes. Journal of Personality and Social Psychology, 50(5), 992–1003. https://doi.org/10.1037/0022-3514.50.5.992 Freedman, R. R. (1986). EEG power spectra in sleep-onset insomnia. Electroencephalography and Clinical Neurophysiology, 63(5), 408–413. https://doi.org/10.1016/0013-4694(86)90122-7 Gao, X., Azarbarzin, A., Keenan, B. T., Ostrowski, M., Pack, F. M., Staley, B., Maislin, G., Pack, A. I., Younes, M., & Kuna, S. T. (2017). Heritability of Heart Rate Response to Arousals in Twins. Sleep, 40(6). https://doi.org/10.1093/sleep/zsx055 Gouin, J. P., Wenzel, K., Deschenes, S., & Dang-Vu, T. (2013). Heart rate variability predicts sleep efficiency. Sleep Medicine, 14, e142. https://doi.org/10.1016/j.sleep.2013.11.321 Gouin, J. P., Wenzel, K., Boucetta, S., O’Byrne, J., Salimi, A., & Dang-Vu, T. T. (2015). High-frequency heart rate variability during worry predicts stress-related increases in sleep disturbances. Sleep Medicine, 16(5), 659–664. https://doi.org/10.1016/j.sleep.2015.02.001 Grimaldi, D., Silvani, A., Benarroch, E. E., & Cortelli, P. (2014). Orexin/hypocretin system and autonomic control: New insights and clinical correlations. Neurology, 82(3), 271–278. https://doi.org/10.1212/WNL.0000000000000045 Jarrin, D. C., Chen, I. Y., Ivers, H., & Morin, C. M. (2014). The role of vulnerability in stress-related insomnia, social support and coping styles on incidence and persistence of insomnia. Journal of Sleep Research, 23(6), 681–688. https://doi.org/10.1111/jsr.12172 Jeyhani, V., Mahdiani, S., Peltokangas, M., & Vehkaoja, A. (2015). Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference, 2015, 5952–5955. https://doi.org/10.1109/EMBC.2015.7319747 Kales, A., & Rechtschaffen, A. (1968). A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. United States Government Printing Office. Kalmbach, D. A., Anderson, J. R., & Drake, C. L. (2018). The impact of stress on sleep: Pathogenic sleep reactivity as a vulnerability to insomnia and circadian disorders. Journal of Sleep Research, 27(6), e12710. https://doi.org/10.1111/jsr.12710 Kalmbach, D. A., Pillai, V., Arnedt, J. T., Anderson, J. R., & Drake, C. L. (2016). Sleep system sensitization: Evidence for changing roles of etiological factors in insomnia. Sleep Medicine, 21, 63–69. https://doi.org/10.1016/j.sleep.2016.02.005 Kalmbach, D. A., Cuamatzi-Castelan, A., Tonnu, C., Tran, K. M., Anderson, J., Roth, T., & Drake, C. (2018). Hyperarousal and sleep reactivity in insomnia: Current insights. Nature and Science of Sleep, Volume 10, 193–201. https://doi.org/10.2147/NSS.S138823 Kirouac, G. J., Parsons, M. P., & Li, S. (2005). Orexin (hypocretin) innervation of the paraventricular nucleus of the thalamus. Brain Research, 1059(2), 179–188. https://doi.org/10.1016/j.brainres.2005.08.035 Kirschbaum, C., Pirke, K. M., & Hellhammer, D. H. (1993). The ’Trier Social Stress Test’—A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28(1–2), 76–81. https://doi.org/10.1159/000119004 Kroeger, D., Absi, G., Gagliardi, C., Bandaru, S. S., Madara, J. C., Ferrari, L. L., Arrigoni, E., Münzberg, H., Scammell, T. E., Saper, C. B., & Vetrivelan, R. (2018). Galanin neurons in the ventrolateral preoptic area promote sleep and heat loss in mice. Nature Communications, 9(1), 4129. https://doi.org/10.1038/s41467-018-06590-7 Lanfranchi, P. A., & Somers, V. K. (2002). Arterial baroreflex function and cardiovascular variability: Interactions and implications. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283(4), R815–R826. https://doi.org/10.1152/ajpregu.00051.2002 Luyster, F. S., Buysse, D. J., & Strollo, P. J. (2010). Comorbid Insomnia and Obstructive Sleep Apnea: Challenges for Clinical Practice and Research. Journal of Clinical Sleep Medicine, 06(02), 196–204. https://doi.org/10.5664/jcsm.27772 Mason, J. W. (1968). A review of psychoendocrine research on the pituitary-adrenal cortical system. Psychosomatic Medicine, 30(5), Suppl:576-607. Merica, H., Blois, R., & Gaillard, J. ‐M. (1998). Spectral characteristics of sleep EEG in chronic insomnia. European Journal of Neuroscience, 10(5), 1826–1834. https://doi.org/10.1046/j.1460-9568.1998.00189.x Miglis, M. G. (2016). Autonomic dysfunction in primary sleep disorders. Sleep Medicine, 19, 40–49. https://doi.org/10.1016/j.sleep.2015.10.001 Monroe, L. J. (1967). Psychological and physiological differences between good and poor sleepers. Journal of Abnormal Psychology, 72(3), 255–264. https://doi.org/10.1037/h0024563 Morin, C. M. (1993). Insomnia: Psychological assessment and management (pp. xvii, 238). Guilford Press. Parrino, L., Boselli, M., Spaggiari, M. C., Smerieri, A., & Terzano, M. G. (1998). Cyclic alternating pattern (CAP) in normal sleep: Polysomnographic parameters in different age groups. Electroencephalography and Clinical Neurophysiology, 107(6), 439–450. https://doi.org/10.1016/S0013-4694(98)00108-4 Penzel, T., Kantelhardt, J. W., Lo, C.-C., Voigt, K., & Vogelmeier, C. (2003). Dynamics of Heart Rate and Sleep Stages in Normals and Patients with Sleep Apnea. Neuropsychopharmacology, 28(S1), S48–S53. https://doi.org/10.1038/sj.npp.1300146 Pepin, J.-L., Borel, A.-L., Tamisier, R., Baguet, J.-P., Levy, P., & Dauvilliers, Y. (2014). Hypertension and sleep: Overview of a tight relationship. Sleep Medicine Reviews, 18(6), 509–519. https://doi.org/10.1016/j.smrv.2014.03.003 Perlis, M. L., Giles, D. E., Mendelson, W. B., Bootzin, R. R., & Wyatt, J. K. (1997). Psychophysiological insomnia: The behavioural model and a neurocognitive perspective. Journal of Sleep Research, 6(3), 179–188. https://doi.org/10.1046/j.1365-2869.1997.00045.x Pitson, D., Chhina, N., Knijn, S., van Herwaaden, M., & Stradling, J. (1994). Changes in Pulse Transit Time and Pulse Rate as Markers of Arousal from Sleep in Normal Subjects. Clinical Science, 87(2), 269–273. https://doi.org/10.1042/cs0870269 Porkka-Heiskanen, T., Strecker, R. E., Thakkar, M., Bjørkum, A. A., Greene, R. W., & McCarley, R. W. (1997). Adenosine: A Mediator of the Sleep-Inducing Effects of Prolonged Wakefulness. Science, 276(5316), 1265–1268. https://doi.org/10.1126/science.276.5316.1265 Ribeiro, A., Gabriel, R., Garcia, B., Cuccio, C., Aqeel, W., Moreno, A., Landeen, C., Hurley, A., Kavey, N., & Pfaff, D. (2022). Temporal relations between peripheral and central arousals in good and poor sleepers. Proceedings of the National Academy of Sciences, 119(25), e2201143119. https://doi.org/10.1073/pnas.2201143119 Riemann, D., Spiegelhalder, K., Feige, B., Voderholzer, U., Berger, M., Perlis, M., & Nissen, C. (2010). The hyperarousal model of insomnia: A review of the concept and its evidence. Sleep Medicine Reviews, 14(1), 19–31. https://doi.org/10.1016/j.smrv.2009.04.002 Rogers, J. (2022). Sleep–wake regulation by baroreflex circuitry. Nature Reviews Neuroscience, 23(12), 707–707. https://doi.org/10.1038/s41583-022-00654-w Sadeh, A., Hauri, P. J., Kripke, D. F., & Lavie, P. (1995). The Role of Actigraphy in the Evaluation of Sleep Disorders. Sleep, 18(4), 288–302. https://doi.org/10.1093/sleep/18.4.288 Saper, C. B., Chou, T. C., & Scammell, T. E. (2001). The sleep switch: Hypothalamic control of sleep and wakefulness. Trends in Neurosciences, 24(12), 726–731. https://doi.org/10.1016/S0166-2236(00)02002-6 Saper, C. B., & Fuller, P. M. (2017). Wake-Sleep Circuitry: An Overview. Current Opinion in Neurobiology, 44, 186. https://doi.org/10.1016/j.conb.2017.03.021 Saper, C. B., Scammell, T. E., & Lu, J. (2005). Hypothalamic regulation of sleep and circadian rhythms. Nature, 437(7063), 1257–1263. https://doi.org/10.1038/nature04284 Sforza, E., Chapotot, F., Lavoie, S., Roche, F., Pigeau, R., & Buguet, A. (2004). Heart rate activation during spontaneous arousals from sleep: Effect of sleep deprivation. Clinical Neurophysiology, 115(11), 2442–2451. https://doi.org/10.1016/j.clinph.2004.06.002 Sforza, E., Jouny, C., & Ibanez, V. (2000). Cardiac activation during arousal in humans: Further evidence for hierarchy in the arousal response. Clinical Neurophysiology, 111(9), 1611–1619. https://doi.org/10.1016/S1388-2457(00)00363-1 Shaffer, F., & Ginsberg, J. P. (2017). An Overview of Heart Rate Variability Metrics and Norms. Frontiers in Public Health, 5, 258. https://doi.org/10.3389/fpubh.2017.00258 Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., Hergueta, T., Baker, R., & Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): The Development and Validation of a Structured Diagnostic Psychiatric Interview for DSM-IV and ICD-10. The Journal of Clinical Psychiatry, 59(suppl 20), 11980. Sherin, J. E., Shiromani, P. J., McCarley, R. W., & Saper, C. B. (1996). Activation of Ventrolateral Preoptic Neurons During Sleep. Science, New Series, 271(5246), 216–219. Somers, V. K., Dyken, M. E., Mark, A. L., & Abboud, F. M. (1993). Sympathetic-nerve activity during sleep in normal subjects. The New England Journal of Medicine, 328(5), 303–307. https://doi.org/10.1056/NEJM199302043280502 Spoormaker, V. I., Verbeek, I., van den Bout, J., & Klip, E. C. (2005). Initial Validation of the SLEEP-50 Questionnaire. Behavioral Sleep Medicine, 3(4), 227–246. https://doi.org/10.1207/s15402010bsm0304_4 Togo, F., Cherniack, N., & Natelson, B. (2006). Electroencephalogram characteristics of autonomic arousals during sleep in healthy men. Clinical Neurophysiology, 117(12), 2597–2603. https://doi.org/10.1016/j.clinph.2006.07.314 Tsai, H.-J., Kuo, T. B. J., Kuo, K.-L., & Yang, C. C. H. (2019). Failure to de-arouse during sleep-onset transitions in the heart rates of individuals with sleep-onset insomnia. Journal of Psychosomatic Research, 126, 109809. https://doi.org/10.1016/j.jpsychores.2019.109809 Tsai, H.-J., Yang, A. C., Tsai, S.-J., Ma, Y., Kuo, T. B. J., Yang, C. C. H., & Peng, C.-K. (2022). Associations of Reduced Sympathetic Neural Activity and Elevated Baroreflex Sensitivity With Non–Rapid Eye Movement Sleep: Evidence From Electroencephalogram- and Electrocardiogram-Based Sleep Staging. Psychosomatic Medicine, 84(5), 621–631. https://doi.org/10.1097/PSY.0000000000001079 Ulrich-Lai, Y. M., & Herman, J. P. (2009). Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience, 10(6), 397–409. https://doi.org/10.1038/nrn2647 Uschakov, A., Gong, H., McGinty, D., & Szymusiak, R. (2007). Efferent projections from the median preoptic nucleus to sleep- and arousal-regulatory nuclei in the rat brain. Neuroscience, 150(1), 104–120. https://doi.org/10.1016/j.neuroscience.2007.05.055 Usui, A., Ishizuka, Y., Obinata, I., Okado, T., Fukuzawa, H., & Kanba, S. (1998). Validity of sleep log compared with actigraphic Sleep-wake state. Psychiatry and Clinical Neurosciences, 52(2), 161–163. https://doi.org/10.1111/j.1440-1819.1998.tb01006.x Usui, A., Ishizuka, Y., Obinata, I., Okado, T., Fukuzawa, H., & Kanba, S. (1999). Validity of sleep log compared with actigraphic sleep–wake state II. Psychiatry and Clinical Neurosciences, 53(2), 183–184. https://doi.org/10.1046/j.1440-1819.1999.00529.x Van De Borne, P., Nguyen, H., Biston, P., Linkowski, P., & Degaute, J. P. (1994). Effects of wake and sleep stages on the 24-h autonomic control of blood pressure and heart rate in recumbent men. American Journal of Physiology-Heart and Circulatory Physiology, 266(2), H548–H554. https://doi.org/10.1152/ajpheart.1994.266.2.H548 Vargas, I., Nguyen, A. M., Muench, A., Bastien, C. H., Ellis, J. G., & Perlis, M. L. (2020). Acute and Chronic Insomnia: What Has Time and/or Hyperarousal Got to Do with It? Brain Sciences, 10(2), 71. https://doi.org/10.3390/brainsci10020071 World Health Organization(WHO). (1993). The ICD-10 classification of mental and behavioural disorders. World Health Organization. (n.d.). Wulterkens, B. M., Hermans, L. W. A., Fonseca, P., Janssen, H. C. J. P., Van Hirtum, P. V., Overeem, S., & Van Gilst, M. M. (2024). Heart rate response to cortical arousals in patients with isolated obstructive sleep apnea and with comorbid insomnia (COMISA). Sleep and Breathing, 28(2), 735–744. https://doi.org/10.1007/s11325-023-02954-6 Yang, C.-M., Chou, C. P.-W., & Hsiao, F.-C. (2011). The Association of Dysfunctional Beliefs About Sleep With Vulnerability to Stress-Related Sleep Disturbance in Young Adults. Behavioral Sleep Medicine, 9(2), 86–91. https://doi.org/10.1080/15402002.2011.557990 Yao, Y., Barger, Z., Saffari Doost, M., Tso, C. F., Darmohray, D., Silverman, D., Liu, D., Ma, C., Cetin, A., Yao, S., Zeng, H., & Dan, Y. (2022). Cardiovascular baroreflex circuit moonlights in sleep control. Neuron, 110(23), 3986-3999.e6. https://doi.org/10.1016/j.neuron.2022.08.027 Younes, M. (2004). Role of Arousals in the Pathogenesis of Obstructive Sleep Apnea. American Journal of Respiratory and Critical Care Medicine, 169(5), 623–633. https://doi.org/10.1164/rccm.200307-1023OC |
Description: | 碩士 國立政治大學 心理學系 110752024 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0110752024 |
Data Type: | thesis |
Appears in Collections: | [心理學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
202401.pdf | | 2326Kb | Adobe PDF | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|