政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/157722
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118260/149296 (79%)
Visitors : 77171551      Online Users : 1845
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/157722


    Title: 探討我國會計師事務所導入生成式AI的管理作為
    Managerial Approaches to Introducing Generative AI in Taiwan’s Accounting Firms
    Authors: 游修汶
    Yu, Hsiu-Wen
    Contributors: 吳豐祥
    Wu, Feng-Shang
    游修汶
    Yu, Hsiu-Wen
    Keywords: 生成式人工智慧
    會計師事務所
    AI導入
    導入流程
    資訊安全
    管理作為
    導入成效
    Generative Artificial Intelligence
    Accounting Firm
    AI Implementation
    Implementation Process
    Information Security
    Managerial Approaches
    Implementation Outcomes
    Date: 2025
    Issue Date: 2025-07-01 14:32:37 (UTC+8)
    Abstract: 隨著生成式人工智慧技術迅速演進,其於企業營運的應用價值也越加受到重視。會計師事務所因其高度知識密集與嚴謹制度之特性,成為評估AI導入可行性與挑戰的重要場域。
    本研究首先進行文獻探討,分析事務所營運特性、AI技術、資訊系統導入與關鍵成功因素等議題。進而使用資訊系統三階段模型,並對應各階段的不同管理作為發展出研究架構。此外,本研究將事務所特性與生成式AI的可解釋性納入變項背景,並從三層面來評估導入成效。研究方法採用質性研究,選擇我國資誠聯合會計師事務所為研究對象,來加以深入探討。最後就訪談內容進行歸納分析找出研究發現。
    本研究所得到的主要結論如下:
    一、我國會計師事務所在導入生成式AI的過程中,會因總部規範遵循與AI模型難解釋
    的考量,而強調透過制度與專業知識來提升導入可行性。
    二、我國會計師事務所在導入生成式AI的前階段,會強調高階主管的支持與專案團隊
    的設立,並審慎評估資源配置、導入範圍與資訊安全等議題,為後續導入奠定基礎。
    三、我國會計師事務所在導入生成式AI的執行階段,會強調跨部門溝通與協作機制,
    也會聚焦使用者層面資訊安全與員工教育訓練,以提升生成式AI的實際操作成效。
    四、我國會計師事務所在導入生成式AI的後階段,會重視AI使用率與員工回饋,也會
    鼓勵全員參與,並透過效益評估與持續推廣,來促進生成式AI應用深化與制度化。
    五、我國會計師事務所導入生成式AI的成效主要包括:員工工作效率與數位能力的提
    升、營運流程與品質的優化,以及品牌形象與客戶信任的強化。
    透過本研究建構的三階段導入架構與管理作為,可協助事務所在風險控管、人員培育與導入評估等方面建立一套完整的管理邏輯,並協助其提升生成式AI導入的成功率。

    本研究主要的理論貢獻包括:
    一、 本研究揭示會計師事務所生成式AI導入過程中各階段的關鍵管理作為,研究結果補足了專業服務產業之科技導入研究上的不足。
    二、 本研究結合生成式AI特性與Chang & Gable導入流程的理論,研究結果展現了資訊系統導入理論在生成式AI新技術領域的適用性。
    三、 藉由深度訪談個案事務所之第一線經驗,本研究提供了具代表性的實務證據,研究結果可供後續學術研究延伸引用與參考。
    With the rapid advancement of generative artificial intelligence (AI) technologies, their application value in enterprise operations has garnered increasing attention. Due to the knowledge-intensive nature and stringent institutional structure of accounting firms, they serve as a critical setting for assessing the feasibility and challenges of AI adoption.
    This study begins with a literature review that explores the operational characteristics of accounting firms, AI technologies, information system implementation, and key success factors. The research framework adopts the three-stage model of information systems and investigates corresponding managerial actions at each phase. Additionally, the study incorporates firm-specific characteristics and the explainability of generative AI as contextual variables, evaluating adoption outcomes from three dimensions. A qualitative research method was employed, with findings derived through thematic analysis of in-depth interviews.
    The main findings of this study are as follows: 1. In the process of adopting generative AI, Taiwanese accounting firms emphasize institutional compliance and professional expertise to enhance feasibility, particularly in response to headquarters mandates and concerns about AI model opacity. 2. In the pre-adoption stage, firms highlight the importance of top management support and the establishment of project teams, along with careful assessment of resource allocation, implementation scope, and information security to lay a solid foundation for subsequent stages. 3. During the implementation stage, firms prioritize cross-departmental communication and coordination mechanisms, as well as information security at the user level and employee training, to improve the practical effectiveness of generative AI tools. 4. In the post-implementation stage, firms focus on usage rates and employee feedback, encourage firm-wide participation, and promote sustained adoption through benefit evaluation and continuous dissemination, thereby deepening and institutionalizing AI applications. 5. The adoption outcomes of generative AI in accounting firms primarily include enhanced employee efficiency and digital capabilities, optimized operational processes and service quality, and strengthened brand image and client trust.
    The three-stage framework and corresponding management actions developed in this study offer a comprehensive logic for managing risks, cultivating talent, and evaluating implementation. These insights can enhance the success rate of generative AI adoption.
    The theoretical contributions of this study are as follows:
    1. This research identifies the key managerial actions at each stage of the generative AI implementation process within accounting firms, thereby addressing a gap in the literature on technology adoption in professional service industries.
    2. By integrating the characteristics of generative AI with the implementation framework proposed by Chang and Gable, this study demonstrates the applicability of information systems implementation theory to emerging technologies such as generative AI.
    3. Drawing on in-depth interviews with frontline personnel from a representative case firm, this study offers practical and context-rich empirical evidence that may serve as a valuable reference for future academic research.
    Reference: Aaker, D. A. (1984). Strategic Market Management. John Wiley & Sons.
    American Accounting Association. (1972). Report of the committee on basic auditing Concepts. The Accounting Review, 47 (Supplement): 1-18.
    Benbasat, I., Dexter, A. S., Drury, D. H., & Goldstein, R. C. (1980). A critique of the stage hypothesis: Theory and empirical evidence. Communications of the ACM, 23(5), 276-285
    Bingo, P. & Sharma, M.K, Godla, Jayanth K. (1999). Critical issues affecting a ERP implementation. Information System Management, 15(5), 7-14
    Bullen, C. V., & Rockart, J. F. (1981). A Primer on Critical Success Factors. CTSR No. 69, MIT Sloan School of Management.
    Chang, S.-I., & Gable, G. G. (2003). Major issues with enterprise systems: A case study and survey of five government agencies. Journal of e-Business, 5(1), 1–31.
    Chow, C. W., J. L. Ho, & S. C. Vera-Munoz. (2008). Exploring the extent and determinants of knowledge sharing in audit engagements. Asia-Pacific Journal of Accounting & Economics 15 (2): 141-160
    Chui M., Hazan E., Roberts R., Singla A., Smaje K., Sukharevsky A., Yee L., Zemmel R. (2023). The Economic Potential of Generative AI: The Next Productivity Frontier. McKinsey Digital
    Creswell, J. W. (2014). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (4th ed.). CA: SAGE.
    Häkkinen, L., & Hilmola, O.-P. (2008). Life after ERP implementation: Long-term development of user perceptions of system success in an after-sales environment. Journal of Enterprise Information Management, 21(3), 285–310.
    Jenson, R.L. & Johnson, I.R. (1999). The enterprise resourcing planning system as a strategic solution. Information Strategy, 15(4), 28-33.
    Karakanian, M. (1999). Choosing an ERP Implementation Strategy. Year 200 Practitioner, 2(7), 1-6.
    Kim, W. (2009). Cloud computing: today and tomorrow. Journal of Object Technology, 8(1).
    King, J. L., & Kraemer, K. L. (1984). Evolution and organizational information systems: An assessment of Nolan’s stage model. Communications of the ACM, 27(5), 468-475.
    Kshetri, N. (2010). Cloud computing in developing economics, IEEE Journal Computer, 43(10), 47-55.
    Morrison, Mike (2016). Critical Success Factors Made Easy. A Step by Step Guide.
    Morris, T., & L. Empson. (1998). Organization and expertise: An exploration of knowledge bases and the management of accounting and consulting firms. Accounting, Organizations and Society 23 (5-6): 609-624.
    Nolan, R. L. (1973). Managing the computer resource: A stage hypothesis. Communications of the ACM, 16(7), 399-405.
    Orlikowski, W.J. (1992). The duality of technology: rethinking the concept of technology in organizations. Organization Science, 3(3), 398-427.
    Patton, M. Q. (2002). Qualitative Research & Evaluation Methods (3rd ed.). CA: SAGE.
    Vasarhelyi, M. A., & Hsieh, S. F. (2020). The impact of artificial intelligence on the audit. (42), 59-68.
    Vera-Munoz, S. C., J. L. Ho, & C. W. Chow. (2006). Enhancing knowledge sharing in public accounting firms. Accounting Horizons 20 (2): 133-155.
    Yin, R. K. (2018). Case Study Research and Applications: Design and Methods (6th ed.). CA: SAGE.
    Brett Grossfeld(2023)。深度學習與機器學習:簡單辨別兩者差異。Zendesk部落格。上網日期2023年9月22日,檢自:https://www.zendesk.tw/blog/machine-learning-and-deep-learning/.html
    OpenAI發展歷史|從GPT-1到ChatGPT-4的演變(2024)。科技大小事|方格子Vocus。上網日期2024年3月1日,檢自:https://vocus.cc/article/65dff90afd89780001a15cda.html
    王詠剛、李開復(2023)。小百科:AI是什麼?5大常見定義一次看懂人工智慧!上網日期2023年7月26日,檢自:https://bookzone.cwgv.com.tw/article/28164.html
    白佩華(2025)。企業AI導入面臨險境:風險、挑戰與全方位因應方案大曝光。上網日期2025年4月22日,檢自:https://www.kscthinktank.com.tw/blog/企業ai導入面臨險境
    吳仁和(2020)。物件導向系統分析與設計:結合MDA與UML。台北市:智勝文化。
    吳思緯(2021)。企業導入大數據分析系統的流程與影響因素之探討。未出版之碩士論文,國立政治大學科技管理與智慧財產研究所,臺北市。
    吳婕渟(2024)。論生成式人工智慧的法律風險與監管-以金融應用實務為例。未出版之碩士論文,東吳大學法律學系,臺北市。
    林靖傑(2009)。會計師事務所與審計人員知識分享影響因素及其效果之研究。未出版之博士論文,國立臺灣大學會計學研究所,臺北市。
    孟德芸(1988)。企業成功關鍵要素之研究-以個人電腦產業為實證。未出版之碩士論文,國立中興大學企業管理研究所,臺中市。
    胡勝清(2023)。基於生成對抗網路與機器學習方法之碳黑分析系統。未出版之碩士論文,國立中山大學資訊工程學系研究所,高雄市。
    張君龍(1998)。企業資源規劃-企業現代化與國際化之全方位解決方案。自動化季刊。
    許文科(2000)。企業導入ERP的關鍵成功因素探討。未出版之碩士論文,國立臺灣科技大學工業管理系,臺北市。
    陳帷綸(2024)。人工智慧應用於金融領域之創新與挑戰。台北市:財團法人台北外匯市場發展基金會。
    陳律芸(2024)。論現行國際間對AI應用之政策及規範-以保險業為例。未出版之碩士論文,國立政治大學科技管理與智慧財產研究所,臺北市。
    陳錦慧(2012)。物流業導入雲端運算服務之關鍵成功因素。未出版之碩士論文,國立臺北科技大學管理學院經營管理EMBA專班,臺北市。
    黃鈴雯(2002)。運用RPA強化會計師事務所營運效率研究-以某會計師事務所為例。未出版之碩士論文,國立中山大學管理學院高階經營碩士學程在職專班,高雄市。
    黃維中(2022)。Trustworthy AI:邁向可信任的人工智慧治理。電腦與通訊,(192),2–6。
    詹逸通(2003)。企業應用資訊管理系統導入實施的期望與成效分析。未出版之碩士論文,國立臺灣大學資訊管理研究所,臺北市。
    葉承宇(2023)。數據治理與主數據管理。上網日期2023年9月23日,檢自:https://ithelp.ithome.com.tw/articles/10325479?sc=rss.iron.html
    葉耿志(2020)。資料治理的數據風險管理與推動建議。國土及公共治理季刊,8(3), 48–53。
    廖宜萱(2018)。會計師事務所內知識分享與審計品質:分享機制及審計階段的角色。未出版之碩士論文,國立臺灣大學會計學研究所,臺北市。
    蔡明娟(2024)。AI應用對銀行客服效能影響之研究。未出版之碩士論文,國立政治大學經營管理碩士學程,臺北市。
    劉璁翰(2002)。企業導入ERP系統階段性關鍵成功因素之研究。未出版之碩士論文,國立臺北科技大學生產系統工程與管理研究所,臺北市。
    蘇育瑩(1999)。台灣電子業導入ERP系統之關鍵因素。未出版之碩士論文,國立中興大學企業管理研究所,臺中市。
    金融監督管理委員會(2024)。《112年審計審理報告》。臺北市:金融監督管理委員會。
    金融監督管理委員會(2024)。《112年會計師事務所服務業調查報告》。臺北市:金融監督管理委員會。
    Description: 碩士
    國立政治大學
    科技管理與智慧財產研究所
    112364130
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112364130
    Data Type: thesis
    Appears in Collections:[Graduate Institute of TIPM] Theses

    Files in This Item:

    File Description SizeFormat
    413001.pdf1577KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback