English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 116896/147927 (79%)
Visitors : 64599448      Online Users : 6353
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/157752
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/157752


    Title: 多型態分支隨機漫步的位置分佈
    Position distributions in multi-type branching random walks
    Authors: 許書睿
    Hsu, Shu-Jui
    Contributors: 洪芷漪
    Hong, Jyy-I
    許書睿
    Hsu, Shu-Jui
    Keywords: 分支過程
    多型態
    分支隨機漫步
    溯祖問題
    位置分佈
    超臨界
    經驗分佈
    Branching process
    Multi-type
    Branching random walks
    Coalescence problem
    Position problem
    Supercritical
    Empirical distribution
    Date: 2025
    Issue Date: 2025-07-01 14:41:07 (UTC+8)
    Abstract: 我們研究具有 L 種型態的超臨界多型態分支過程 {Z_n}_{n≥0}。首先,在適當的條件下,探討從第 n 代隨機選取一個個體時,其祖先型態的漸近比例。接著,我們考慮此過程在實數線 R 上所對應的分支隨機漫步。令 Z_{n,i}(x) 表示第 n 代中,位置小於或等於 x 的型態 i 個體數。我們證明存在一發散的數列 {β_n}_{n=0}^∞,使得 Z_{n,i}(β_nx)/|Zn| 以 L^2 的形式收斂。最後,我們證明從第 n代中隨機選取一個個體,其位置在機率分布上收斂至標準常態分布。
    We study a supercritical multi-type branching process {Z_n}_{n≥0} with L types. First, we investigate, under suitable conditions, the asymptotic proportion of ancestral types for an individual randomly selected from generation n. Next, we consider the associated branching random walk on the real line R. Let Z_{n,i}(x) denote the number of type-i individuals in generation n whose positions are less than or equal to x. We show that there is a sequence {β_n}_{n=0}^∞ with β_n → ∞ such that the ratio Z_{n,i}(β_nx)/|Zn| converges in L^2. Finally, we establish that the position of a uniformly chosen individual from generation n converges in distribution to the standard normal law.
    Reference: [1] K.B. Athreya. Discounted branching random walks. Advances in applied probability, 17(1):53–66, 1985.
    [2] K.B. Athreya. Branching random walks. The Legacy of Alladi Ramakrishnan in the Mathematical Sciences, pages 337–349, 2010.
    [3] K.B. Athreya. Coalescence in the recent past in rapidly growing populations. Stochastic Processes and their Applications, 122(11):3757–3766, 2012.
    [4] K.B. Athreya and J.-I. Hong. An application of the coalescence theory to branching random walks. Journal of Applied Probability, 50(3):893–899, 2013.
    [5] K.B. Athreya and J.-I. Hong. Markov limit of line of decent types in a multitype supercritical branching process. Statistics & Probability Letters, 98:54–58, 2015.
    [6] K.B. Athreya and P. E. Ney. Branching processes. Courier Corporation, 2004.
    [7] J.-L. Chi and J.-I. Hong. The range of asymmetric branching random walk. Statistics & Probability Letters, 193:109705, 2023.
    [8] P.L. Davies. The simple branching process: a note on convergence when the mean is infinite. Journal of Applied Probability, 15(3):466–480, 1978.
    [9] R. Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.
    [10] F. Galton and H. W. Watson. On the probability of the extinction of families. The Journal of the Anthropological Institute of Great Britain and Ireland, 4:138–144, 1875.
    [11] D.R. Grey. Almost sure convergence in markov branching processes with infinite mean. Journal of Applied Probability, 14(4):702–716, 1977.
    [12] J.-I. Hong. Coalescence on supercritical multi-type branching processes. Sankhya A, 77:65–78, 2015.
    [13] J.-I. Hong. Coalescence on critical and subcritical multi-type branching processes. Journal of Applied Probability, 53(3):802–817, 2016.
    [14] W. Yang and Z. Ye. The asymptotic equipartition property for non-homogeneous Markov chains indexed by a homogeneous tree. IEEE Transactions on Information Theory, 53(9):3275–3280, 2007.
    Description: 碩士
    國立政治大學
    應用數學系
    112751001
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112751001
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    100101.pdf383KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback