English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 117581/148612 (79%)
造訪人次 : 69758496      線上人數 : 536
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/157752
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/157752


    題名: 多型態分支隨機漫步的位置分佈
    Position distributions in multi-type branching random walks
    作者: 許書睿
    Hsu, Shu-Jui
    貢獻者: 洪芷漪
    Hong, Jyy-I
    許書睿
    Hsu, Shu-Jui
    關鍵詞: 分支過程
    多型態
    分支隨機漫步
    溯祖問題
    位置分佈
    超臨界
    經驗分佈
    Branching process
    Multi-type
    Branching random walks
    Coalescence problem
    Position problem
    Supercritical
    Empirical distribution
    日期: 2025
    上傳時間: 2025-07-01 14:41:07 (UTC+8)
    摘要: 我們研究具有 L 種型態的超臨界多型態分支過程 {Z_n}_{n≥0}。首先,在適當的條件下,探討從第 n 代隨機選取一個個體時,其祖先型態的漸近比例。接著,我們考慮此過程在實數線 R 上所對應的分支隨機漫步。令 Z_{n,i}(x) 表示第 n 代中,位置小於或等於 x 的型態 i 個體數。我們證明存在一發散的數列 {β_n}_{n=0}^∞,使得 Z_{n,i}(β_nx)/|Zn| 以 L^2 的形式收斂。最後,我們證明從第 n代中隨機選取一個個體,其位置在機率分布上收斂至標準常態分布。
    We study a supercritical multi-type branching process {Z_n}_{n≥0} with L types. First, we investigate, under suitable conditions, the asymptotic proportion of ancestral types for an individual randomly selected from generation n. Next, we consider the associated branching random walk on the real line R. Let Z_{n,i}(x) denote the number of type-i individuals in generation n whose positions are less than or equal to x. We show that there is a sequence {β_n}_{n=0}^∞ with β_n → ∞ such that the ratio Z_{n,i}(β_nx)/|Zn| converges in L^2. Finally, we establish that the position of a uniformly chosen individual from generation n converges in distribution to the standard normal law.
    參考文獻: [1] K.B. Athreya. Discounted branching random walks. Advances in applied probability, 17(1):53–66, 1985.
    [2] K.B. Athreya. Branching random walks. The Legacy of Alladi Ramakrishnan in the Mathematical Sciences, pages 337–349, 2010.
    [3] K.B. Athreya. Coalescence in the recent past in rapidly growing populations. Stochastic Processes and their Applications, 122(11):3757–3766, 2012.
    [4] K.B. Athreya and J.-I. Hong. An application of the coalescence theory to branching random walks. Journal of Applied Probability, 50(3):893–899, 2013.
    [5] K.B. Athreya and J.-I. Hong. Markov limit of line of decent types in a multitype supercritical branching process. Statistics & Probability Letters, 98:54–58, 2015.
    [6] K.B. Athreya and P. E. Ney. Branching processes. Courier Corporation, 2004.
    [7] J.-L. Chi and J.-I. Hong. The range of asymmetric branching random walk. Statistics & Probability Letters, 193:109705, 2023.
    [8] P.L. Davies. The simple branching process: a note on convergence when the mean is infinite. Journal of Applied Probability, 15(3):466–480, 1978.
    [9] R. Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.
    [10] F. Galton and H. W. Watson. On the probability of the extinction of families. The Journal of the Anthropological Institute of Great Britain and Ireland, 4:138–144, 1875.
    [11] D.R. Grey. Almost sure convergence in markov branching processes with infinite mean. Journal of Applied Probability, 14(4):702–716, 1977.
    [12] J.-I. Hong. Coalescence on supercritical multi-type branching processes. Sankhya A, 77:65–78, 2015.
    [13] J.-I. Hong. Coalescence on critical and subcritical multi-type branching processes. Journal of Applied Probability, 53(3):802–817, 2016.
    [14] W. Yang and Z. Ye. The asymptotic equipartition property for non-homogeneous Markov chains indexed by a homogeneous tree. IEEE Transactions on Information Theory, 53(9):3275–3280, 2007.
    描述: 碩士
    國立政治大學
    應用數學系
    112751001
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0112751001
    資料類型: thesis
    顯示於類別:[應用數學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    100101.pdf383KbAdobe PDF0檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋