Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/158266
|
Title: | 臺灣進口牛肉碳足跡揭露對國內消費者選擇的影響探討 Exploring the Impact of Carbon Footprint Disclosure of Imported Beef on Domestic Consumer Choices in Taiwan |
Authors: | 魏浚益 Wei, Chun-Yi |
Contributors: | 許志義 郭迺鋒 Hsu, Jyh-Yih Kuo, Nai-Fong 魏浚益 Wei, Chun-Yi |
Keywords: | 碳足跡 消費意願 科技接受模型 價格敏感度 政策支持 進口牛肉 Carbon Footprint Purchase Intention Technology Acceptance Model (TAM) Price Sensitivity Policy Support Imported Beef |
Date: | 2025 |
Issue Date: | 2025-08-04 12:49:00 (UTC+8) |
Abstract: | 面對氣候變遷與全球碳中和目標的推進,食品產業的碳足跡成為永續消費政策的重要關注焦點。臺灣牛肉市場高度依賴進口,消費者對於進口牛肉所隱含之碳排放外部成本的認知與行為反應,對環境政策與國際貿易政策的設計具關鍵意義。為深入探討此一議題,本研究以科技接受模型(Technology Acceptance Model, 簡稱TAM)為理論基礎,整合「購買因素」、「碳足跡認知」、「政策支持態度」、「價格敏感度」、「產地偏好度」等構面,建構消費者對低碳足跡牛肉的消費意願與行為意圖模型。 研究透過問卷調查法共取得316份有效樣本,採用敘述性統計、調節效果分析與多元迴歸分析檢定十一項研究假說。研究結果顯示,「知覺有用性」(購買因素與碳足跡認知)為預測消費意圖之最主要因素,顯示產品屬性與環保資訊對行為傾向具有關鍵影響;「價格敏感度」則對消費者行為具有高度調節作用,為實際購買的主要門檻;而「政策支持態度」則能有效提升知覺價值與行為轉換意願。意外發現則包括「產地偏好度」對消費意願呈正向影響,顯示對牛肉產地的信任為綠色轉型中的潛在助力。 本研究結果對政策制定與企業策略均具實務意涵,建議政府應推動碳足跡資訊揭露制度,並搭配價格誘因與品牌端永續傳播機制,以促進臺灣消費者對低碳產品的接受與採購,實現貿易永續與減碳雙重目標。 Amid growing concerns over climate change and global carbon neutrality goals, this study investigates Taiwanese consumers’acceptance of carbon footprint information on imported beef. Based on the Technology Acceptance Model (TAM), the research examines how perceived usefulness, perceived ease of use, price sensitivity, policy support, and origin preference affect consumers’purchase intentions for low-carbon products. A total of 316 valid responses were collected through an online survey. Empirical analysis using regression models confirmed that perceived usefulness is the strongest predictor of behavioral intention, while price sensitivity remains a key barrier. Policy support positively influences both perceived value and consumer intention. Notably, origin preference also shows a positive effect, suggesting that trusted brands can facilitate sustainable consumption. The findings highlight the need for carbon labeling systems, financial incentives, and transparent brand communication strategies. These measures can improve consumer trust and willingness to adopt low-carbon products, contributing to Taiwan’s sustainable trade and climate goals. |
Reference: | Chang, J., Peng, S., Yin, Y., Ciais, P., Havlik, P., and Herrero, M. (2021). The key role of production efficiency changes in livestock methane emission mitigation. Agu Advances, 2(2):e2021AV000391.
Costantini, M., Vázquez-Rowe, I., Manzardo, A., and Bacenetti, J. (2021). Environmental impact assessment of beef cattle production in semi-intensive systems in paraguay. Sustainable Production and Consumption, 27:269–281.
Davis, F. D. (1985). A technology acceptance model for empirically testing new enduser information systems: Theory and results. PhD thesis, Massachusetts Institute of Technology.
Du, Y., Ge, Y., Ren, Y., Fan, X., Pan, K., Lin, L., Wu, X., Min, Y., Meyerson, L. A., Heino,M., et al. (2018). A global strategy to mitigate the environmental impact of china’s ruminant consumption boom. Nature communications, 9(1):4133.
Falchetta, G., Golinucci, N., and Rocco, M. V. (2021). Environmental and energy implications of meat consumption pathways in sub-saharan africa. Sustainability, 13(13):7075.
Gaitán, L., Läderach, P., Graefe, S., Rao, I., and Van der Hoek, R. (2016). Climate-smart livestock systems: an assessment of carbon stocks and ghg emissions in nicaragua. PLoS One, 11(12):e0167949.
Greenwood, P. L., Gardner, G. E., and Ferguson, D. M. (2018). Current situation and future prospects for the australian beef industry—a review. Asian-Australasian journal of animal sciences, 31(7):992.
Havlík, P., Valin, H., Herrero, M., Obersteiner, M., Schmid, E., Rufino, M. C., Mosnier, A., Thornton, P. K., Böttcher, H., Conant, R. T., et al. (2014). Climate change mitigation through livestock system transitions. Proceedings of the National Academy of Sciences, 111(10):3709–3714.
Henry, B. and Eckard, R. (2009). Greenhouse gas emissions in livestock production systems. TG: Tropical Grasslands, 43(4):232.
Holmann, F. J., Mora Benard, M. A., Mtimet, N., and Hoek, R. v. d. (2014). Dual-purpose milk and beef value chain development in nicaragua: Past trends, current status and likely future directions. CIAT/ILRI project report.
Lin, M.-W. (2024). 歐盟cbam 啟動對台灣產業影響之研析. 石油季刊, 60(1):1–31.
Mazzetto, A. M., Falconer, S., and Ledgard, S. (2023). Carbon footprint of new zealand beef and sheep meat exported to different markets. Environmental Impact Assessment Review, 98:106946.
Minx, J., Peters, G., Wiedmann, T., and Barrett, J. (2008). Ghg emissions in the global supply chain of food products. In International Input–Output Meeting on Managing the Environment, pages 9–11.
Morris, S. and Kenyon, P. (2014). Intensive sheep and beef production from pasture— a new zealand perspective of concerns, opportunities and challenges. Meat science, 98(3):330–335.
Mulcahy, E. and Smith, R. (2024). Cop29 must move from stalling to action. The Lancet, 404(10463):1623–1624.
Parlasca, M. C. and Qaim, M. (2022). Meat consumption and sustainability. Annual Review of Resource Economics, 14:17–41.
Poore, J. and Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392):987–992.
Pratt, A. N., Freiría, H., and Muñoz, G. (2019). Productivity and efficiency in grasslandbased livestock production in latin america: The cases of uruguay and paraguay.
Ridoutt, B. G., Page, G., Opie, K., Huang, J., and Bellotti, W. (2014). Carbon, water and land use footprints of beef cattle production systems in southern australia. Journal of Cleaner Production, 73:24–30.
Rogelj, J., Den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., Schaeffer, R., Sha, F., Riahi, K., and Meinshausen, M. (2016). Paris agreement climate proposals need a boost to keep warming well below 2 c. Nature, 534(7609):631–639.
Rotz, C. A., Asem-Hiablie, S., Place, S., and Thoma, G. (2019). Environmental footprints of beef cattle production in the united states. Agricultural systems, 169:1–13.
Thoma, G., Putman, B., Matlock, M., Popp, J., and English, L. (2017). Sustainability assessment of us beef production systems.
van Selm, B., de Boer, I. J., Ledgard, S. F., and van Middelaar, C. E. (2021). Reducing greenhouse gas emissions of new zealand beef through better integration of dairy and beef production. Agricultural Systems, 186:102936.
Vanham, D., Bruckner, M., Schwarzmueller, F., Schyns, J., and Kastner, T. (2023). Multimodel assessment identifies livestock grazing as a major contributor to variation in european union land and water footprints. Nature Food, 4(7):575–584.
Wiedmann, T. and Lenzen, M. (2018). Environmental and social footprints of international trade. Nature geoscience, 11(5):314–321.
Zhang, B., Zhao, X., Wu, X., Han, M., Guan, C. H., and Song, S. (2018). Consumptionbased accounting of global anthropogenic ch4 emissions. Earth’s Future, 6(9):1349–1363.
吳奕璋(2012). 以延伸性科技接受模型探討數位電視消費意願之研究.
宋彩蓮(2017). 環景式教學對公職考生學習接受度之研究:科技接受模型之應用.
張勝發(2018). 以整合性科技接受模型探討行動支付之使用意願.
林志峰(2013). 以整合性科技接受模型探討智慧型手機國中生之消費意願. |
Description: | 碩士 國立政治大學 經濟學系 111258006 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0111258006 |
Data Type: | thesis |
Appears in Collections: | [經濟學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
800601.pdf | | 1483Kb | Adobe PDF | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|