English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 117581/148612 (79%)
造訪人次 : 69764098      線上人數 : 867
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/158268


    題名: 環境政策與永續轉型的動態均衡:異質參與者之強化學習分析
    The Dynamics of Environmental Policy and Sustainability Transition: A Heterogeneous Multi-Agent Reinforcement Learning Approach
    作者: 曾婷婉
    Tseng, Ting-Wan
    貢獻者: 何靜嫺
    曾婷婉
    Tseng, Ting-Wan
    關鍵詞: 多參與者之強化學習
    環境政策
    綠能轉型
    碳稅
    永續性
    不完全資訊
    不完全競爭
    個體基礎模型
    目標性補貼
    政策模擬
    Multi-agent reinforcement learning
    Environmental policy
    Green transition
    Carbon tax
    Sustainability
    Incomplete information
    Imperfect competition
    Agent-based modeling
    Targeted subsidy
    Policy simulation
    日期: 2025
    上傳時間: 2025-08-04 12:49:24 (UTC+8)
    摘要: 本研究使用多參與者強化學習(MARL)模型,以探討在具有不完全競爭與資訊不完全的市場中,環境政策所帶來的動態影響。模型中的參與者包括消費者、企業與政府,透過反覆互動學習行為策略,進而做出內生性的決策,如綠能投資、定價與勞動供給。本模型納入了偏好雜訊、碳稅制度與目標性補貼等設計。模擬結果顯示,資訊不對稱促進參與者的實驗性行為,並加速綠能技術的採用;相對地,共通性衝擊雖有助於企業勾結,但會抑制綠能革新。此外,針對綠能領導企業與低薪勞工所設計的浮動排放稅率與目標性補貼,相較於固定稅率或比例型課稅機制,更能有效達成政策目標。
    綜合而言,本研究突顯 MARL 模型於複雜經濟政策環境建模上的應用優勢,並對設計具高度適應性與包容性的永續轉型策略提供實務參考。
    This paper develops a multi-agent reinforcement learning (MARL) model to examine the dynamic effects of environmental policies in a market with imperfect competition and incomplete information. Agents—including consumers, firms, and the government—learn behavioral strategies through repeated interactions, allowing for endogenous decisions such as green investment, pricing, and labor supply. The model incorporates noisy preferences, carbon taxation, and targeted subsidies. Simulation results show that informational frictions foster experimentation and accelerate green adoption, while common shocks improve tacit coordination but reduce green innovation. Flexible emission taxes and targeted subsidies for green leaders and low-wage workers are more effective than fixed-rate taxes or proportional schemes. These findings highlight the advantages of MARL in modeling complex policy environments and provide practical insights for designing adaptive and inclusive sustainability transitions.
    參考文獻: 1. Acemoglu, D., Aghion, P., Bursztyn, L., & Hemous, D. (2012). The environment and directed technical change. American economic review, 102(1), 131-166.
    2. Athey, S., & Imbens, G. W. (2017). The state of applied econometrics: Causality and policy evaluation. Journal of Economic perspectives, 31(2), 3-32.
    3. Bajari, P., Nekipelov, D., Ryan, S. P., & Yang, M. (2015). Machine learning methods for demand estimation. American Economic Review, 105(5), 481-485.
    4. Batten, S., Sowerbutts, R., & Tanaka, M. (2020). Climate change: Macroeconomic impact and implications for monetary policy. Ecological, societal, and technological risks and the financial sector, 13-38.
    5. Chen, M., Joseph, A., Kumhof, M., Pan, X., & Zhou, X. (2021). Deep reinforcement learning in a monetary model. arXiv preprint arXiv:2104.09368.
    6. Combet, E., Ghersi, F., Hourcade, J. C., & Théry, D. (2010). Carbon tax and equity: The importance of policy design. Critical issues in environmental taxation, pp-277.
    7. Council, A. (2013). Summary for policy-makers. Arctic Resilience Interim Report 2013.
    8. Curry, M., Trott, A., Phade, S., Bai, Y., & Zheng, S. (2022). Analyzing Micro-Founded General Equilibrium Models with Many Agents using Deep Reinforcement Learning. arXiv preprint arXiv:2201.01163.
    9. Danthine, J. P., & Donaldson, J. B. (1993). Methodological and empirical issues in real business cycle theory. European economic review, 37(1), 1-35.
    10. Feng, Z. H., Wei, Y. M., & Wang, K. (2012). Estimating risk for the carbon market via extreme value theory: An empirical analysis of the EU ETS. Applied Energy, 99, 97-108.
    11. Feng, Y., Xu, D., Failler, P., & Li, T. (2020). Research on the time-varying impact of economic policy uncertainty on crude oil price fluctuation. Sustainability, 12(16), 6523.
    12. Gazzotti, P. (2022). RICE50+: DICE model at country and regional level. Socio-Environmental Systems Modelling, 4, 18038-18038.
    13. Goulder, L. H., & Schneider, S. H. (1999). Induced technological change and the attractiveness of CO2 abatement policies. Resource and energy economics, 21(3-4), 211-253.
    14. Grubb, M., Wieners, C., & Yang, P. (2021). Modeling myths: On DICE and dynamic realism in integrated assessment models of climate change mitigation. Wiley Interdisciplinary Reviews: Climate Change, 12(3), e698.
    15. Heinrich, J., & Silver, D. (2016). Deep reinforcement learning from self-play in imperfect-information games. arXiv preprint arXiv:1603.01121.
    16. Fischer, C., & Heutel, G. (2013). Environmental macroeconomics: Environmental policy, business cycles, and directed technical change. Annu. Rev. Resour. Econ., 5(1), 197-210.
    17. Hill, E., Bardoscia, M., & Turrell, A. (2021). Solving heterogeneous general equilibrium economic models with deep reinforcement learning. arXiv preprint arXiv:2103.16977.
    18. Kim, I. M., & Loungani, P. (1992). The role of energy in real business cycle models. journal of Monetary Economics, 29(2), 173-189.
    19. Kreif, N., & DiazOrdaz, K. (2019). Machine learning in policy evaluation: new tools for causal inference. arXiv preprint arXiv:1903.00402.
    20. Lanctot, M., Lockhart, E., Lespiau, J. B., Zambaldi, V., Upadhyay, S., Pérolat, J., ... & Ryan-Davis, J. (2019). OpenSpiel: A framework for reinforcement learning in games. arXiv preprint arXiv:1908.09453.
    21. Mas-Colell, A., Whinston, M. D., & Green, J. R. (1995). Microeconomic theory (Vol. 1). New York: Oxford university press.
    22. Moran, K. (2001). Dynamic general-equilibrium models and why the bank of canada is interested in them. Bank of Canada Review, 2000(Winter), 3-12.
    23. Mullainathan, S., & Spiess, J. (2017). Machine learning: an applied econometric approach. Journal of Economic Perspectives, 31(2), 87-106.
    24. Nordhaus, W. D. (2017). Revisiting the social cost of carbon. Proceedings of the National Academy of Sciences, 114(7), 1518-1523.
    25. Nordhaus, W. (2018). Projections and uncertainties about climate change in an era of minimal climate policies. American economic journal: economic policy, 10(3), 333-360.
    26. OpenAI. 2018. OpenAI Five. https://blog.openai.com/openai-five/.
    27. Popp, D. (2004). ENTICE: endogenous technological change in the DICE model of global warming. Journal of Environmental Economics and management, 48(1), 742-768.
    28. Popp, D. (2010). Innovation and climate policy. Annu. Rev. Resour. Econ., 2(1), 275-298.
    29. Radovic, D., Kruitwagen, L., de Witt, C. S., Caldecott, B., Tomlinson, S., & Workman, M. (2022). Revealing robust oil and gas company macro-strategies using deep multi-agent reinforcement learning. arXiv preprint arXiv:2211.11043.
    30. Richardson, A., van Florenstein Mulder, T., & Vehbi, T. (2021). Nowcasting GDP using machine-learning algorithms: A real-time assessment. International journal of forecasting, 37(2), 941-948.
    31. Shayegh, S., Reissl, S., Roshan, E., & Calcaterra, M. (2023). An assessment of different transition pathways to a green global economy. Communications Earth & Environment, 4(1), 448.
    32. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., ... & Hassabis, D. (2017). Mastering the game of go without human knowledge. nature, 550(7676), 354-359.
    33. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1, No. 1, pp. 9-11). Cambridge: MIT press.
    34. Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D. D. L., ... & Riedmiller, M. (2018). Deepmind control suite. arXiv preprint arXiv:1801.00690.
    35. Trott, A., Srinivasa, S., van der Wal, D., Haneuse, S., & Zheng, S. (2021). Building a foundation for data-driven, interpretable, and robust policy design using the ai economist. arXiv preprint arXiv:2108.02904.Varian, H. R. (2014). Big data: New tricks for econometrics. Journal of economic perspectives, 28(2), 3-28.
    36. AlphaStar, D. (2019). Mastering the real-time strategy game starcraft ii. URL: https://deepmind. com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii.
    37. Woloszko, N. (2020). Tracking activity in real time with Google Trends.
    38. Yang, Y., Niu, L., Amin, S., & Yasin, I. (2024). Unemployment and mental health: a global study of unemployment’s influence on diverse mental disorders. Frontiers in Public Health, 12, 1440403.
    39. Zhan, E., Zheng, S., Yue, Y., & Lucey, P. (2018). Generative multi-agent behavioral cloning. arXiv preprint arXiv:1803.07612, 2.
    40. Zhang, K., Yang, Z., & Başar, T. (2021). Multi-agent reinforcement learning: A selective overview of theories and algorithms. Handbook of reinforcement learning and control, 321-384.
    41. Zheng, S., Trott, A., Srinivasa, S., Naik, N., Gruesbeck, M., Parkes, D. C., & Socher, R. (2020). The ai economist: Improving equality and productivity with ai-driven tax policies. arXiv preprint arXiv:2004.13332.
    42. Zheng, S., Yue, Y., & Hobbs, J. (2016). Generating long-term trajectories using deep hierarchical networks. Advances in Neural Information Processing Systems, 29.
    描述: 碩士
    國立政治大學
    經濟學系
    112258004
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0112258004
    資料類型: thesis
    顯示於類別:[經濟學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    800401.pdf5285KbAdobe PDF0檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋