參考文獻: | 1. Acemoglu, D., Aghion, P., Bursztyn, L., & Hemous, D. (2012). The environment and directed technical change. American economic review, 102(1), 131-166. 2. Athey, S., & Imbens, G. W. (2017). The state of applied econometrics: Causality and policy evaluation. Journal of Economic perspectives, 31(2), 3-32. 3. Bajari, P., Nekipelov, D., Ryan, S. P., & Yang, M. (2015). Machine learning methods for demand estimation. American Economic Review, 105(5), 481-485. 4. Batten, S., Sowerbutts, R., & Tanaka, M. (2020). Climate change: Macroeconomic impact and implications for monetary policy. Ecological, societal, and technological risks and the financial sector, 13-38. 5. Chen, M., Joseph, A., Kumhof, M., Pan, X., & Zhou, X. (2021). Deep reinforcement learning in a monetary model. arXiv preprint arXiv:2104.09368. 6. Combet, E., Ghersi, F., Hourcade, J. C., & Théry, D. (2010). Carbon tax and equity: The importance of policy design. Critical issues in environmental taxation, pp-277. 7. Council, A. (2013). Summary for policy-makers. Arctic Resilience Interim Report 2013. 8. Curry, M., Trott, A., Phade, S., Bai, Y., & Zheng, S. (2022). Analyzing Micro-Founded General Equilibrium Models with Many Agents using Deep Reinforcement Learning. arXiv preprint arXiv:2201.01163. 9. Danthine, J. P., & Donaldson, J. B. (1993). Methodological and empirical issues in real business cycle theory. European economic review, 37(1), 1-35. 10. Feng, Z. H., Wei, Y. M., & Wang, K. (2012). Estimating risk for the carbon market via extreme value theory: An empirical analysis of the EU ETS. Applied Energy, 99, 97-108. 11. Feng, Y., Xu, D., Failler, P., & Li, T. (2020). Research on the time-varying impact of economic policy uncertainty on crude oil price fluctuation. Sustainability, 12(16), 6523. 12. Gazzotti, P. (2022). RICE50+: DICE model at country and regional level. Socio-Environmental Systems Modelling, 4, 18038-18038. 13. Goulder, L. H., & Schneider, S. H. (1999). Induced technological change and the attractiveness of CO2 abatement policies. Resource and energy economics, 21(3-4), 211-253. 14. Grubb, M., Wieners, C., & Yang, P. (2021). Modeling myths: On DICE and dynamic realism in integrated assessment models of climate change mitigation. Wiley Interdisciplinary Reviews: Climate Change, 12(3), e698. 15. Heinrich, J., & Silver, D. (2016). Deep reinforcement learning from self-play in imperfect-information games. arXiv preprint arXiv:1603.01121. 16. Fischer, C., & Heutel, G. (2013). Environmental macroeconomics: Environmental policy, business cycles, and directed technical change. Annu. Rev. Resour. Econ., 5(1), 197-210. 17. Hill, E., Bardoscia, M., & Turrell, A. (2021). Solving heterogeneous general equilibrium economic models with deep reinforcement learning. arXiv preprint arXiv:2103.16977. 18. Kim, I. M., & Loungani, P. (1992). The role of energy in real business cycle models. journal of Monetary Economics, 29(2), 173-189. 19. Kreif, N., & DiazOrdaz, K. (2019). Machine learning in policy evaluation: new tools for causal inference. arXiv preprint arXiv:1903.00402. 20. Lanctot, M., Lockhart, E., Lespiau, J. B., Zambaldi, V., Upadhyay, S., Pérolat, J., ... & Ryan-Davis, J. (2019). OpenSpiel: A framework for reinforcement learning in games. arXiv preprint arXiv:1908.09453. 21. Mas-Colell, A., Whinston, M. D., & Green, J. R. (1995). Microeconomic theory (Vol. 1). New York: Oxford university press. 22. Moran, K. (2001). Dynamic general-equilibrium models and why the bank of canada is interested in them. Bank of Canada Review, 2000(Winter), 3-12. 23. Mullainathan, S., & Spiess, J. (2017). Machine learning: an applied econometric approach. Journal of Economic Perspectives, 31(2), 87-106. 24. Nordhaus, W. D. (2017). Revisiting the social cost of carbon. Proceedings of the National Academy of Sciences, 114(7), 1518-1523. 25. Nordhaus, W. (2018). Projections and uncertainties about climate change in an era of minimal climate policies. American economic journal: economic policy, 10(3), 333-360. 26. OpenAI. 2018. OpenAI Five. https://blog.openai.com/openai-five/. 27. Popp, D. (2004). ENTICE: endogenous technological change in the DICE model of global warming. Journal of Environmental Economics and management, 48(1), 742-768. 28. Popp, D. (2010). Innovation and climate policy. Annu. Rev. Resour. Econ., 2(1), 275-298. 29. Radovic, D., Kruitwagen, L., de Witt, C. S., Caldecott, B., Tomlinson, S., & Workman, M. (2022). Revealing robust oil and gas company macro-strategies using deep multi-agent reinforcement learning. arXiv preprint arXiv:2211.11043. 30. Richardson, A., van Florenstein Mulder, T., & Vehbi, T. (2021). Nowcasting GDP using machine-learning algorithms: A real-time assessment. International journal of forecasting, 37(2), 941-948. 31. Shayegh, S., Reissl, S., Roshan, E., & Calcaterra, M. (2023). An assessment of different transition pathways to a green global economy. Communications Earth & Environment, 4(1), 448. 32. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., ... & Hassabis, D. (2017). Mastering the game of go without human knowledge. nature, 550(7676), 354-359. 33. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1, No. 1, pp. 9-11). Cambridge: MIT press. 34. Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D. D. L., ... & Riedmiller, M. (2018). Deepmind control suite. arXiv preprint arXiv:1801.00690. 35. Trott, A., Srinivasa, S., van der Wal, D., Haneuse, S., & Zheng, S. (2021). Building a foundation for data-driven, interpretable, and robust policy design using the ai economist. arXiv preprint arXiv:2108.02904.Varian, H. R. (2014). Big data: New tricks for econometrics. Journal of economic perspectives, 28(2), 3-28. 36. AlphaStar, D. (2019). Mastering the real-time strategy game starcraft ii. URL: https://deepmind. com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii. 37. Woloszko, N. (2020). Tracking activity in real time with Google Trends. 38. Yang, Y., Niu, L., Amin, S., & Yasin, I. (2024). Unemployment and mental health: a global study of unemployment’s influence on diverse mental disorders. Frontiers in Public Health, 12, 1440403. 39. Zhan, E., Zheng, S., Yue, Y., & Lucey, P. (2018). Generative multi-agent behavioral cloning. arXiv preprint arXiv:1803.07612, 2. 40. Zhang, K., Yang, Z., & Başar, T. (2021). Multi-agent reinforcement learning: A selective overview of theories and algorithms. Handbook of reinforcement learning and control, 321-384. 41. Zheng, S., Trott, A., Srinivasa, S., Naik, N., Gruesbeck, M., Parkes, D. C., & Socher, R. (2020). The ai economist: Improving equality and productivity with ai-driven tax policies. arXiv preprint arXiv:2004.13332. 42. Zheng, S., Yue, Y., & Hobbs, J. (2016). Generating long-term trajectories using deep hierarchical networks. Advances in Neural Information Processing Systems, 29. |