English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 117581/148612 (79%)
Visitors : 69758470      Online Users : 562
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/158372
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/158372


    Title: 多標記樹的漸進分析
    Asymptotics of Leaf-Multi-Labeled Trees
    Authors: 張維霽
    Chang, Wei-Chi
    Contributors: 符麥克
    Michael Fuchs
    張維霽
    Chang, Wei-Chi
    Keywords: 漸進分析
    漸進行為
    多標記樹
    二元樹
    至少二元的樹
    無標記樹
    Asymptotics
    asymptotic behavior
    multi-labeled trees
    binary trees
    non-binary trees
    unlabeled trees
    Date: 2025
    Issue Date: 2025-08-04 13:11:04 (UTC+8)
    Abstract: 多標記樹, 也就是從固定的集合用正整數標記葉子的樹, 不但在生物學的演化上有多樣的應用, 而且也是無標記樹的推廣, 它們的實際和漸進計數在組合學是一個古典的主題。
    Czabarka et al.等人推導了多標記樹的生成函數。 這篇論文的目標是解釋他們的結果而且用這些結果找到二元樹和至少二元之多標記樹的漸進展開式。除此之外, 我們證明主要項當中的常數之漸進展開式 (當標記的數量趨近無窮時) 而且構思有效率的程序以估計它們。 我們也會給出計數和估計值的表格。
    這篇論文的短大綱如以下所述:
    在第一章, 我們將從圖論裡的一些定義開始, 尤其是樹和圖有關聯的部分。1.2節的主要篇幅將會是singularity分析, 因為它在推導漸進式扮演著核心之角色。
    在第二章, 我們將更詳細地解釋Czabarka et al.等人對於多標記樹的生成函數之結果。我們也將會給有
    根二元無標記樹的表格 (包含實際值和估計值)。此外,我們將在定理11用符號組合之方法簡化他們的證明。
    在第三章,我們將用前兩章之背景推導四種多標記樹 (包含有根二元、無根二元、有根至少二元、無根至少二元)數量的漸進式。我們也將推導當標記集合趨近無窮時,常數項之漸進展開式。
    Multi-labeled trees, i.e., trees with leaves labeled with positive integers from a fixed set, are not only important in diverse applications in evolutionary biology, but are generalizations of unlabeled trees whose exact and asymptotic enumeration is a classical topic in combinatorics.
    Czabarka et al. derived generating functions of multi-labeled trees. The goal of this thesis is to explain their results and use them to find asymptotic expansions of the counts of binary and non-binary multi-labeled trees. Moreover, we prove asymptotic expansions of the constants in the main term of the asymptotics (as the number of labels tends to infinity) and devise efficient procedures to approximate them. Tables of the counts and the approximations are given as well.
    A short outline of the thesis is as follows:
    In Chapter 1, we will begin with some definitions from graph theory, in particular those related to trees and graphs. The main context of Section 1.2 will be singularity analysis, as it plays a central role in deriving asymptotics.
    In Chapter 2, we will explain Czabarka et al.'s results of generating functions for multi-labeled trees in more detail. We will also give the table of numbers of rooted binary unlabeled trees containing both exact values and approximations. Furthermore, we will simplify their proof in Theorem 11 with methods from symbolic combinatorics.
    In Chapter 3, we will derive the asymptotics of the number of four kinds of multi-labeled trees based on the background in the previous two chapters, including rooted binary, unrooted binary, rooted non-binary, and unrooted non-binary ones. We will also derive the asymptotic expansions of constants as the labeled set approaches infinity. Moreover, we will give some tables of the counts and discuss approximation methods.
    Reference: [1] É.Czabarka, P. L. Erdős, V. Johnson, V. Moulton (2013). Generating functions for multi-labeled trees, Discrete Applied Mathematics, 161:1-2, 107--117.
    [2] V. P. Johnson. Enumeration Results on Leaf-labeled Trees (Ph.D thesis), 2012.
    [3] Analytic Combinatorics, Cambridge University Press, 2009.
    [4] J. H. van Lint and R. M. Wilson. A Course in Combinatorics, second edition, 2001.
    [5] Douglas B. West. Introduction to Graph Theory, second edition, Pearson Education Taiwan Ltd., 2011.
    [6] OpenAI (2025). https://chat.openai.com
    [7] 微積分學習要訣, 第20版, 劉明昌著, 2020年9月
    Description: 碩士
    國立政治大學
    應用數學系
    112751018
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112751018
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    101801.pdf546KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback