English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118260/149296 (79%)
Visitors : 76940350      Online Users : 11555
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/158431


    Title: 以自我決定論觀點討論員工使用生成式AI與其工作敬業及工作表現之關係
    The Examination of the Relationship Between Employees' Use of Generative AI and Work Engagement and Job Performance from a Self-Determination Theory Perspective
    Authors: 鮑姵文
    Pao, Pei-Wen
    Contributors: 胡昌亞
    Hu, Chang-Ya
    鮑姵文
    Pao, Pei-Wen
    Keywords: 生成式人工智慧
    自我決定理論
    工作敬業
    工作績效
    Generative Artificial Intelligence
    Self-Determination Theory
    Work Engagement
    Job Performance
    Date: 2025
    Issue Date: 2025-08-04 13:44:06 (UTC+8)
    Abstract: 本研究探討生成式人工智慧於職場中之應用,是否可透過自我決定理論中
    之心理需求滿足,進一步影響員工的工作敬業與績效,並使用272份具正職經驗之問卷資料進行實證研究。

    研究結果指出:(1)生成式AI使用行為對工作績效具有直接正向影響,但
    對工作敬業之直接效果不顯著;(2)自主滿足、能力滿足兩項心理需求皆具有顯著中介效果,能影響其敬業與績效表現;(3)生成式AI對工作敬業與績效的影響大多經由心理需求中介產生,顯示工具本身的效能需結合員工的心理感受方能發揮最大效益。

    根據本研究結果,生成式AI對員工的正向影響需透過滿足員工在使用過程
    中的心理需求,方能有效轉化為工作敬業與績效表現。因此,企業應在導入生成式AI時透過工作設計與支持機制提升員工的能力感,使AI成為促進動機與表現的媒介。未來研究亦可納入個體差異與組織情境作為調節因素,拓展模型解釋力。
    This study investigates whether the use of generative artificial intelligence (GenAI) in the workplace influences employees’ work engagement and job performance through the satisfaction of psychological needs, based on Self Determination Theory. A total of 272 valid responses from full-time employees were analyzed.

    The findings reveal that: (1) GenAI use has a direct positive effect on job performance, but its direct impact on work engagement is not significant. (2) Autonomy and competence both play significant mediating roles, linking GenAI use to engagement and performance. (3) Most positive effects of GenAI occur through psychological mechanisms, highlighting the importance of employees’ internal experiences.

    These results suggest that organizations should enhance employees’ competence and autonomy through supportive job design to fully realize the benefits of GenAI. By enhancing employees’ sense of competence through thoughtful job design and support systems, AI can become a tool that motivates and empowers rather than one that merely automates.
    Reference: Amazon Web Services. (2023),生成式人工智能(GenAI)新世界:過去、現在 和未來.,https://aws.amazon.com/tw/local/hongkong/generative-ai/genai-blog- 100/,擷取日期:2025年5月19日。

    Brynjolfsson, E., & Mitchell, T. (2017). What can machine learning do? Workforce implications. Science, 358(6370), 1530-1534.

    Brynjolfsson, E., Li, D., & Raymond, L. R. (2023). Generative AI at Work. The Quarterly Journal of Economics, 138(4), 2049-2087.

    Banfield, M. (2025). ‘Employees feel capable and connected’: The vital role played by good technology in job satisfaction. The Guardian. https://www.theguardian.com/the-digital-workspace- reimagined/2025/jun/27/why-good-tech-makes-employees-feel-capable-and-connected (accessed: June 29, 2025).

    Cerasoli, C. P., Nicklin, J. M., & Ford, M. T. (2014). Intrinsic motivation and extrinsic incentives jointly predict performance: A 40-year meta-analysis. Psychological Bulletin, 140(4), 980-1008.

    Crist, C. (2024). Early autonomy over AI can boost employee motivation, study says. HR Dive. https://www.hrdive.com/news/early-autonomy-over-ai-can- boost-employee-motivation/727349/ (accessed: June 29, 2025).

    Chong, X., Zhang, J., & Lee, C. (2025). The effect of job skill demands under AI embeddedness on well-being in organizations and job performance. International Journal of Environmental Research and Public Health, 22(1).

    Dwivedi, Y. K., Hughes, D. L., Kar, A. K., Baabdullah, A. M., Grover, P., Abbas, R., ... & Koohang, A. (2019). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 71, 102642.

    Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York: Plenum.
    Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry, 11(4), 227-268.

    Frese, M., & Sonnentag, S. (2002). Performance concepts and performance theory. In S. Sonnentag (Ed.), Psychological management of individual performance (1st ed., pp. 3-25). John Wiley & Sons Ltd.

    Gagné, M. (2003). The role of autonomy support and autonomy orientation in prosocial behavior engagement. Motivation and Emotion, 27(3), 199-223.

    Gagné, M., & Deci, E. L. (2005). Self‐determination theory and work motivation. Journal of Organizational Behavior, 26(4), 331-362.

    Gagné, M., Parker, S. K., Griffin, M. A., & Ryan, R. M. (2022). Understanding and shaping the future of work with self-determination theory. Nature Reviews Psychology, 1(10), 648-662.

    Johnston, M. M., & Finney, S. J. (2010). Measuring basic needs satisfaction: Evaluating previous research and conducting new psychometric evaluations of the Basic Needs Satisfaction in General Scale. Contemporary Educational Psychology, 35(4), 280-296.

    Kahn, W. A. (1990). Psychological conditions of personal engagement and disengagement at work. Academy of Management Journal, 33(4), 692-724.

    Koopmans, L., Bernaards, C. M., Hildebrandt, V. H., Schaufeli, W. B., de Vet, H. C. W., & van der Beek, A. J. (2013). Development of an individual work performance questionnaire. International Journal of Productivity and Performance Management, 62(1), 6-28.

    Lund, S., Manyika, J., Sanghvi, S., Dandona, G. S., Madgavkar, A., Chui, M., ... & Hasebe, P. (2023). Generative AI and the future of work in America. McKinsey Global Institute. https://www.mckinsey.com/mgi/our-research/generative-ai-and-the-future-of-work-in-america (accessed: June 20, 2025).

    Motowidlo, S. J., Borman, W. C., & Schmit, M. J. (1997). A theory of individual differences in task and contextual performance. Human Performance, 10(2), 71-83.

    McKinsey & Company. (2023). The economic potential of generative AI: The next productivity frontier. https://www.mckinsey.com/capabilities/mckinsey- digital/our-insights/the-economic-potential-of-generative-ai-the-next- productivity-frontier (accessed: June 3, 2025).

    Manyika, J., Smit, S., & Wu, D. (2025). Superagency in the workplace: Empowering people to unlock AI’s full potential at work. McKinsey & Company. https://www.mckinsey.com/capabilities/mckinsey-digital/our- insights/superagency-in-the-workplace (accessed: June 29, 2025).

    Prasad, K. D. V., & De, T. (2024). Generative AI as a catalyst for HRM practices: Mediating effects of trust. Humanities and Social Sciences Communications, 11(1), Article 1362.

    Schaufeli, W. B., Bakker, A. B., & Salanova, M. (2006). The measurement of work engagement with a short questionnaire: A cross-national study. Educational and Psychological Measurement, 66(4), 701-716.

    Schaufeli, W. B., Salanova, M., González-Romá, V., & Bakker, A. B. (2002). The measurement of engagement and burnout: A two sample confirmatory factor analytic approach. Journal of Happiness Studies, 3(1), 71-92.

    Taber, K. S. (2018). The use of Cronbach’s alpha when developing and reporting research instruments in science education. Research in Science Education, 48(6), 1273-1296.

    Van den Broeck, A., Ferris, D. L., Chang, C.-H., & Rosen, C. C. (2016). A review of self-determination theory’s basic psychological needs at work. Journal of Management, 42(5), 1195-1229.

    Van den Broeck, A., Vansteenkiste, M., De Witte, H., Soenens, B., & Lens, W. (2008). Capturing autonomy, competence, and relatedness at work: Construction and initial validation of the Work-related Basic Need Satisfaction scale. Journal of Occupational and Organizational Psychology, 83(4), 981-1002.

    White, R. W. (1959). Motivation reconsidered: The concept of com petence. Psychological Review, 66, 297-333.
    Description: 碩士
    國立政治大學
    企業管理研究所(MBA學位學程)
    112363029
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112363029
    Data Type: thesis
    Appears in Collections:[企業管理研究所(MBA學位學程)] 學位論文

    Files in This Item:

    File Description SizeFormat
    302901.pdf1202KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback