Reference: | Amazon Web Services. (2023),生成式人工智能(GenAI)新世界:過去、現在 和未來.,https://aws.amazon.com/tw/local/hongkong/generative-ai/genai-blog- 100/,擷取日期:2025年5月19日。
Brynjolfsson, E., & Mitchell, T. (2017). What can machine learning do? Workforce implications. Science, 358(6370), 1530-1534.
Brynjolfsson, E., Li, D., & Raymond, L. R. (2023). Generative AI at Work. The Quarterly Journal of Economics, 138(4), 2049-2087.
Banfield, M. (2025). ‘Employees feel capable and connected’: The vital role played by good technology in job satisfaction. The Guardian. https://www.theguardian.com/the-digital-workspace- reimagined/2025/jun/27/why-good-tech-makes-employees-feel-capable-and-connected (accessed: June 29, 2025).
Cerasoli, C. P., Nicklin, J. M., & Ford, M. T. (2014). Intrinsic motivation and extrinsic incentives jointly predict performance: A 40-year meta-analysis. Psychological Bulletin, 140(4), 980-1008.
Crist, C. (2024). Early autonomy over AI can boost employee motivation, study says. HR Dive. https://www.hrdive.com/news/early-autonomy-over-ai-can- boost-employee-motivation/727349/ (accessed: June 29, 2025).
Chong, X., Zhang, J., & Lee, C. (2025). The effect of job skill demands under AI embeddedness on well-being in organizations and job performance. International Journal of Environmental Research and Public Health, 22(1).
Dwivedi, Y. K., Hughes, D. L., Kar, A. K., Baabdullah, A. M., Grover, P., Abbas, R., ... & Koohang, A. (2019). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 71, 102642.
Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York: Plenum. Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry, 11(4), 227-268.
Frese, M., & Sonnentag, S. (2002). Performance concepts and performance theory. In S. Sonnentag (Ed.), Psychological management of individual performance (1st ed., pp. 3-25). John Wiley & Sons Ltd.
Gagné, M. (2003). The role of autonomy support and autonomy orientation in prosocial behavior engagement. Motivation and Emotion, 27(3), 199-223.
Gagné, M., & Deci, E. L. (2005). Self‐determination theory and work motivation. Journal of Organizational Behavior, 26(4), 331-362.
Gagné, M., Parker, S. K., Griffin, M. A., & Ryan, R. M. (2022). Understanding and shaping the future of work with self-determination theory. Nature Reviews Psychology, 1(10), 648-662.
Johnston, M. M., & Finney, S. J. (2010). Measuring basic needs satisfaction: Evaluating previous research and conducting new psychometric evaluations of the Basic Needs Satisfaction in General Scale. Contemporary Educational Psychology, 35(4), 280-296.
Kahn, W. A. (1990). Psychological conditions of personal engagement and disengagement at work. Academy of Management Journal, 33(4), 692-724.
Koopmans, L., Bernaards, C. M., Hildebrandt, V. H., Schaufeli, W. B., de Vet, H. C. W., & van der Beek, A. J. (2013). Development of an individual work performance questionnaire. International Journal of Productivity and Performance Management, 62(1), 6-28.
Lund, S., Manyika, J., Sanghvi, S., Dandona, G. S., Madgavkar, A., Chui, M., ... & Hasebe, P. (2023). Generative AI and the future of work in America. McKinsey Global Institute. https://www.mckinsey.com/mgi/our-research/generative-ai-and-the-future-of-work-in-america (accessed: June 20, 2025).
Motowidlo, S. J., Borman, W. C., & Schmit, M. J. (1997). A theory of individual differences in task and contextual performance. Human Performance, 10(2), 71-83.
McKinsey & Company. (2023). The economic potential of generative AI: The next productivity frontier. https://www.mckinsey.com/capabilities/mckinsey- digital/our-insights/the-economic-potential-of-generative-ai-the-next- productivity-frontier (accessed: June 3, 2025).
Manyika, J., Smit, S., & Wu, D. (2025). Superagency in the workplace: Empowering people to unlock AI’s full potential at work. McKinsey & Company. https://www.mckinsey.com/capabilities/mckinsey-digital/our- insights/superagency-in-the-workplace (accessed: June 29, 2025).
Prasad, K. D. V., & De, T. (2024). Generative AI as a catalyst for HRM practices: Mediating effects of trust. Humanities and Social Sciences Communications, 11(1), Article 1362.
Schaufeli, W. B., Bakker, A. B., & Salanova, M. (2006). The measurement of work engagement with a short questionnaire: A cross-national study. Educational and Psychological Measurement, 66(4), 701-716.
Schaufeli, W. B., Salanova, M., González-Romá, V., & Bakker, A. B. (2002). The measurement of engagement and burnout: A two sample confirmatory factor analytic approach. Journal of Happiness Studies, 3(1), 71-92.
Taber, K. S. (2018). The use of Cronbach’s alpha when developing and reporting research instruments in science education. Research in Science Education, 48(6), 1273-1296.
Van den Broeck, A., Ferris, D. L., Chang, C.-H., & Rosen, C. C. (2016). A review of self-determination theory’s basic psychological needs at work. Journal of Management, 42(5), 1195-1229.
Van den Broeck, A., Vansteenkiste, M., De Witte, H., Soenens, B., & Lens, W. (2008). Capturing autonomy, competence, and relatedness at work: Construction and initial validation of the Work-related Basic Need Satisfaction scale. Journal of Occupational and Organizational Psychology, 83(4), 981-1002.
White, R. W. (1959). Motivation reconsidered: The concept of com petence. Psychological Review, 66, 297-333. |