English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118405/149442 (79%)
Visitors : 78372957      Online Users : 1323
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/158513


    Title: 隨機矩陣理論應用於財產保險業損失率的三個研究
    The Three Studies on Applying Random Matrix Theory to Loss Ratios for General Insurance Companies
    Authors: 陳哲斌
    Chen, Che-Pin
    Contributors: 蔡政憲
    Tsai, Chenghsien
    陳哲斌
    Chen, Che-Pin
    Keywords: 隨機矩陣理論
    最佳商品組合
    風險傳遞網路
    逐步最小二乘二次規劃法
    冪矩陣
    門檻網路
    最小生成樹
    分群演算法
    反向參與率
    Wishart 隨機過程
    動態系統
    橢圓幾何
    Random Matrix Theory
    optimal product portfolio
    risk transmission network
    Stepwise Least Squares Quadratic Programming
    power matrix
    threshold network
    Minimum Spanning Tree
    clustering algorithm
    Inverse Participation Ratio
    Wishart stochastic process
    dynamic system
    ellipsoid geometry
    Date: 2025
    Issue Date: 2025-08-04 14:10:00 (UTC+8)
    Abstract: 隨機矩陣理論可以用於處理數據相互間的雜訊,本論文為以隨機矩陣理論 (RMT) 研究三個議題:最佳商品組合、風險傳遞網路與時段間動態系統,並以1991-2022年美國財產保險公司的資料進行實證分析。
    最佳商品組合為以單一保險公司的商品損失率與核保利潤率為研究對象,本研究以RMT方法論重構商品間損失率與核保利潤率的共變異矩陣,藉以最小化綜合損失率,或核保利潤率變異數為目標,計算最佳商品組合。實證上,採用522家股份保險公司,及203 家相互保險公司的商品組合進行分析,發現無論是以綜合損失率或是核保利潤率的變異數為研究目標,RMT方法論,在最小化目標函數上,具有統計上的顯著性,也同時驗證代理人理論的假說。但在降低核保利潤率變異數的目標上,股份保險公司可能會產生公司治理上的困擾。
    風險傳遞網路,為以所選定保險公司的綜合損失率為研究對象,以RMT方法重構保險公司間損失率的相關性,結合網路分析方法論,研究保險公司間的損失率相關性的風險樣貌,並再細分為風險連通性、風險傳遞性與風險貢獻度。實證上,選用449家股份保險公司和216家相互保險公司進行分析,並對於2008年金融風暴前後時期的損失率相關性進行研究。研究發現股份保險公司的連通性高於相互保險公司,而在風險傳遞性上,可區分為不同的傳遞群組,相同群組內將具有穩定的損失傳遞性,此特性可以提供監理機關進行分群監理或再保險公司採用分群風險溢價的參考。另外,研究發現金融風暴時期的網路結構的連通性沒有變化,但風險傳遞網路有局域化的現象,表示保險公司金融風暴期間有進行風險控管甚至於隔離的結果。
    時段間動態系統,以所選定保險公司綜合損失率的時段間共變異矩陣為一動態系統,經過RMT方法重構後,研究在不同時段間的相似性或者有極限行為。實證上,選用449家股份保險公司,216家相互保險公司進行分析。研究發現損失率的年度變化率的共變異數間,具有均值回復的特性,符合Wishart 隨機過程的有效性測試。研究中,輔以橢球幾何的方式觀察共變異矩陣的動態行為,發現球體的方向性不具有預測性,也就是特徵向量無法發現極限動態行為,以及主成份主導著損失率變化率在時間上的演化。
    This paper employs Random Matrix Theory (RMT), a methodology capable of addressing noise among data, to study three topics: optimal product portfolio, risk transmission networks, and intertemporal dynamic systems. An empirical analysis is conducted using data from U.S. property insurance companies spanning 1991 to 2022.
    An optimal product portfolio is defined by minimizing the variances of loss ratios and underwriting profit margins for products from an individual insurance company. In this study, the RMT methodology is employed to reconstruct the covariance matrices of both loss ratios and underwriting profit margins among products, with the goal of computing the optimal product portfolio by minimizing either the overall loss ratio or the variance of underwriting profit margins. Empirical analysis of product portfolios from 522 stock insurance companies and 203 mutual insurance companies reveals that, regardless of whether the objective is to minimize the variance of the overall loss ratio or that of underwriting profit margins, the RMT methodology achieves statistically significant improvements over the empirical portfolio, thereby supporting the agent theory hypothesis. However, when the objective is to minimize the variance of underwriting profit margins, stock insurance companies may encounter corporate governance issues.
    The risk transmission network examines the correlation patterns of loss ratios among insurance companies by integrating RMT with network analysis methodologies. The study delves into risk characteristics, including connectivity, transmissibility, and contribution. Empirical data from 449 stock insurance companies and 216 mutual insurance companies' combined ratios are analyzed, with a focus on the periods before and after the 2008 financial crisis. Findings indicate that stock insurance companies exhibit higher connectivity than mutual insurance companies. Furthermore, insurers can be categorized into distinct groups with stable loss ratio transmissibility within each group, providing insights for regulators to implement group-based supervision or for reinsurers to adopt group-based premium strategies. During financial crises, the connectivity of the network structure remains unchanged; however, localized phenomena emerge, suggesting that insurers managed risks or implemented isolation measures during such periods.
    The intertemporal dynamic system uses the loss ratio covariance matrix, reconstructed via RMT, as a dynamic system to study similarities or limiting behaviors across time periods. Empirical analysis involving 449 stock insurance companies and 216 mutual insurance companies reveals that the covariance of annual loss ratio changes exhibits a mean-reverting property, validating the effectiveness of the Wishart random process. Supplemented by ellipsoid geometry to observe the dynamic behavior of the covariance matrix, the study finds that the directionality of the ellipsoid lacks predictability, indicating that eigenvectors do not reveal limiting dynamic behavior. Additionally, principal components dominate the temporal evolution of loss ratio changes.
    Reference: 圖書 (含專著與選集) Books (including monographs and anthologies)
    Akemann, G., Baik, J., & Di Francesco, P. (2011). The Oxford handbook of random matrix theory. Oxford University Press.
    Allen, F., & Babus, A. (2009). Network in finance. In P. R. Kleindorfer & Y. Wind (Eds.), The network challenge: Strategy, profit, and risk in an interlinked world (pp. 16). Pearson Prentice Hall.
    Arnold, L., Jones, C. K., Mischaikow, K., Raugel, G., & Arnold, L. (1995). Random dynamical systems. Springer.
    Arnold, V. I., & Avez, A. (1968). Ergodic problems of classical mechanics. Benjamin.
    Bhattacharya, R., & Majumdar, M. (2007). Random dynamical systems: Theory and applications. Cambridge University Press.
    Boltzmann, L. (1910). Vorlesungen über gastheorie (Vol. 1). JA Barth (A. Meiner).
    Boltzmann, L. (2022). Lectures on gas theory. Univ of California Press.
    Bouchaud, J.-P., & Potters, M. (2000). Theory of financial risks - from statistical physics to risk management. Cambridge University Press.
    Bouchaud, J.-P., & Potters, M. (2003). Theory of financial risk and derivative pricing: From statistical physics to risk management. Cambridge University Press.
    Brin, M., & Stuck, G. (2002). Introduction to dynamical systems. Cambridge University Press.
    Brock, W. A. (2018). Nonlinearity and complex dynamics in economics and finance. In The economy as an evolving complex system (pp. 77-97). CRC Press.
    Brock, W. A., Hsieh, D. A., & LeBaron, B. D. (1991). Nonlinear dynamics, chaos, and instability: Statistical theory and economic evidence. MIT press.
    Chung, F. R. (1997). Spectral graph theory (Vol. 92). American Mathematical Soc.
    Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to algorithms. MIT Press.
    Deift, P., & Gioev, D. (2009). Random matrix theory : Invariant ensembles and universality Courant Institute of Mathematical Sciences.
    Friedberg, S. H., Insel, A. J., & Spence, L. E. (2019). Linear algebra (Fifth edition. ed.). Pearson.
    Gill, P. E., & Wong, E. (2011). Sequential quadratic programming methods. In Mixed integer nonlinear programming (pp. 147-224). Springer.
    Gourieroux, C., & Sufana, R. (2003). Wishart quadratic term structure models. HEC Montréal, Centre de Recherche en E-Finance.
    Halmos, P. R. (2017). Lectures on ergodic theory. Courier Dover Publications.
    Hwang, F. K., & Li, W.-C. W. (1996). Link-connectivities of extended double loop networks. In Combinatorial network theory (pp. 107-124). Springer.
    Kloeden, P. E., & Platen, E. (1992). Introduction to stochastic time discrete approximation. In P. E. Kloeden & E. Platen (Eds.), Numerical solution of stochastic differential equations (pp. 305-337). Springer Berlin Heidelberg.
    Li, W.-C. W. (2019). Zeta and $ l $-functions in number theory and combinatorics (Vol. 129). American Mathematical Soc.
    Mandelbrot, B. B., & Mandelbrot, B. B. (1982). The fractal geometry of nature (Vol. 1). WH Freeman New York.
    Mehta, M. L. (2004). Random matrices madan lal mehta (3rd ed.). Elsevier.
    Milstein, G. N., & Tretyakov, M. V. (2004). Stochastic numerics for mathematical physics (Vol. 39). Springer.
    O'hara, M. (1998). Market microstructure theory. John Wiley & Sons.
    Percival, D. B., & Walden, A. T. (2000). Wavelet methods for time series analysis. Cambridge University Press.
    Poincaré, H. (1892). Solutions périodiques: Non-existence des intégrales uniformes; solutions asymptotiques (Vol. 1). Gauthier-Villars.
    Poincaré, H. (1893). Les méthodes nouvelles de la mécanique céleste (Vol. 2). Gauthier-Villars et fils, imprimeurs-libraires.
    Poincaré, H. (1899). Les méthodes nouvelles de la mécanique céleste (Vol. 3). Gauthier-Villars et fils.
    Poincaré, H. (1905). Leçons de mécanique céleste: Professées à la sorbonne (Vol. 1). Gauthier-Villars.
    Potters, M., & Bouchaud, J.-P. (2020). A first course in random matrix theory : For physicists, engineers and data scientists. Cambridge University Press.
    Seary, A. J., & Richards, W. D. (2003). Spectral methods for analyzing and visualizing networks: An introduction. In P. Pattison, Kathleen Carley, and Ronald Breiger (Ed.), Dynamic social network modeling and analysis: Workshop summary and papers. National Academies Press.
    Strang, G. (2006). Linear algebra and its applications. Thomson, Brooks/Cole.
    Strogatz, S. H. (2018). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. CRC press.
    Strogatz, S. H. (2024). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. CRC Press.
    Tarjan, R. E. (1983). Data structures and network algorithms. SIAM.
    Wigner, E. P. (1993). On a class of analytic functions from the quantum theory of collisions. In The collected works of eugene paul wigner (pp. 409-440). Springer.
    文章 Articles
    許世璋 (2010). 運用隨機矩陣理論探討雜訊交易對投資組合報酬率之影響 [未出版之博士論文] 國立臺北大學. AiritiLibrary.
    Acharya, V. V., & Richardson, M. (2009). Causes of the financial crisis. Critical review, 21(2-3), 195-210.
    Adams, M., & Hossain, M. (1998). Managerial discretion and voluntary disclosure: Empirical evidence from the new zealand life insurance industry. Journal of Accounting and Public Policy, 17(3), 245-281.
    Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. Proc. 20th Int. Conf. Very Large Data Bases, VLDB,
    Allen, F., & Gale, D. (2000). Financial contagion. Journal of Political Economy, 108(1), 1-33.
    Anand, A., Chakravarty, S., & Martell, T. (2005). Empirical evidence on the evolution of liquidity: Choice of market versus limit orders by informed and uninformed traders. Journal of Financial Markets, 8(3), 288-308.
    Anderson, P. W. (1958). Absence of diffusion in certain random lattices. Physical Review, 109(5), 1492.
    Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. science, 286(5439), 509-512.
    Barber, B. M. (1994). Noise trading and prime and score premiums. Journal of Empirical Finance, 1(3), 251-278.
    Barberis, N., Shleifer, A., & Vishny, R. (1998). A model of investor sentiment. Journal of Financial economics, 49(3), 307-343.
    Bargigli, L., Di Iasio, G., Infante, L., Lillo, F., & Pierobon, F. (2015). The multiplex structure of interbank networks. Quantitative Finance, 15(4), 673-691.
    Barndorff-Nielsen, O. E., & Stelzer, R. (2007). Positive-definite matrix processes of finite variation. Probability and Mathematical Statistics, 27(1), 3-43.
    Battiston, S., Puliga, M., Kaushik, R., Tasca, P., & Caldarelli, G. (2012). Debtrank: Too central to fail? Financial networks, the fed and systemic risk. Scientific Reports, 2(1), 1-6.
    Birkhoff, G. D. (1931). Proof of the ergodic theorem. Proceedings of the National Academy of Sciences, 17(12), 656-660.
    Black, F. (1986). Noise. The Journal of Finance, 41(3), 528-543.
    Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637-654.
    Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U. (2006). Complex networks: Structure and dynamics. Physics reports, 424(4), 175-308.
    Boggs, P. T., & Tolle, J. W. (1995). Sequential quadratic programming. Acta Numerica, 4, 1-51.
    Bonanno, G., Caldarelli, G., Lillo, F., & Mantegna, R. N. (2003). Topology of correlation-based minimal spanning trees in real and model markets. Physical Review E, 68(4).
    Bonanno, G., Lillo, F., & Mantegna, R. N. (2001). High-frequency cross-correlation in a set of stocks. Quantitative Finance, 1(1), 96-104.
    Bouchaud, J.-P., & Potters, M. (2009). Financial applications of random matrix theory: A short review. arXiv preprint arXiv:0910.1205.
    Brockman, P., & Chung, D. Y. (2000). Informed and uninformed trading in an electronic, order‐driven environment. Financial review, 35(2), 125-146.
    Brown, G. W. (1999). Volatility, sentiment, and noise traders. Financial Analysts Journal, 55(2), 82-90.
    Bru, M.-F. (1991). Wishart processes. Journal of Theoretical Probability, 4(4), 725-751.
    Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013). Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203.
    Brunnermeier, M. K. (2009). Deciphering the liquidity and credit crunch 2007–2008. Journal of Economic Perspectives, 23(1), 77-100.
    Bun, J., Bouchaud, J.-P., & Potters, M. (2017). Cleaning large correlation matrices: Tools from random matrix theory. Physics reports, 666, 1-109.
    Buraschi, A., Porchia, P., & Trojani, F. (2010). Correlation risk and optimal portfolio choice. The Journal of Finance, 65(1), 393-420.
    Caccioli, F., Farmer, J. D., Foti, N., & Rockmore, D. (2015). Overlapping portfolios, contagion, and financial stability. Journal of Economic Dynamics and Control, 51, 50-63.
    Cairns, A. J. G., Blake, D., & Dowd, K. (2006). A two-factor model for stochastic mortality with parameter uncertainty: Theory and calibration. Journal of Risk and Insurance, 73(4), 687-718.
    Chakraborti, A., Sharma, K., Pharasi, H. K., Bakar, K. S., Das, S., & Seligman, T. H. (2020). Emerging spectra characterization of catastrophic instabilities in complex systems. New Journal of Physics, 22(6), 063043.
    Chen, C.-P. (1991). The loops in double loop networks The Pennsylvania State University. Unpublished master’s thesis.
    Chen, C.-P. (2022). Random matrix approach to the insurance costs of mutiple disease and mutiple benefit insurance. Taiwan Insurance Review, 38(3), 15.
    Chen, C.-P., & Tsai, C. J. (in Press). Life insurance portfolio optimization. 中山管理評論, i+1-43.
    Chen, C.-W., & Ma, W.-J. (2018). Toward a scenario with complementary stochastic and deterministic information in financial fluctuations. Chinese journal of physics, 56(3), 853-862.
    Chiarella, C., Da Fonseca, J., & Grasselli, M. (2014). Pricing range notes within wishart affine models. Insurance: Mathematics and Economics, 58, 193-203.
    Chiu, M. C., & Wong, H. Y. (2014). Mean–variance asset–liability management with asset correlation risk and insurance liabilities. Insurance: Mathematics and Economics, 59, 300-310.
    Cifuentes, R., Ferrucci, G., & Shin, H. S. (2005). Liquidity risk and contagion. Journal of the European Economic association, 3(2-3), 556-566.
    Coifman, R. R., & Lafon, S. (2006). Diffusion maps. Applied and computational harmonic analysis, 21(1), 5-30.
    Cont, R., Moussa, A., & Santos, E. B. (2013). Network structure and systemic risk in banking systems. Handbook on systemic risk, 5.
    Cuchiero, C., Filipović, D., Mayerhofer, E., & Teichmann, J. (2011). Affine processes on positive semidefinite matrices. Ann. Appl. Probab., 21(2), 66.
    Cuchiero, C., Keller-Ressel, M., Mayerhofer, E., & Teichmann, J. (2016). Affine processes on symmetric cones. Journal of Theoretical Probability, 29, 359-422.
    Cuong, P. K., Ngoc, T. T. B., Cong, B. T., & Chau, V. T. Q. (2019). Noise trader risk: Evidence from vietnam stock market. Hue University Journal of Science: Economics and Development, 128(5C), 5–16-15–16.
    Da Fonseca, J., Grasselli, M., & Ielpo, F. (2011). Hedging (co) variance risk with variance swaps. International Journal of Theoretical and Applied Finance, 14(06), 899-943.
    Da Fonseca, J., Grasselli, M., & Ielpo, F. (2014). Estimating the wishart affine stochastic correlation model using the empirical characteristic function. Studies in Nonlinear Dynamics & Econometrics, 18(3), 253-289.
    Da Fonseca, J., Martino, G., & and Tebaldi, C. (2008). A multifactor volatility heston model. Quantitative Finance, 8(6), 591-604.
    Daniel, K., Hirshleifer, D., & Subrahmanyam, A. (1998). Investor psychology and security market under- and overreactions. The Journal of Finance, 53(6), 1839-1885.
    De Bondt, W. F., & Thaler, R. (1985). Does the stock market overreact? The Journal of Finance, 40(3), 793-805.
    De Long, J. B., Shleifer, A., Summers, L. H., & Waldmann, R. J. (1990). Positive feedback investment strategies and destabilizing rational speculation. The Journal of Finance, 45(2), 379-395.
    Dean, D. S., & Majumdar, S. N. (2006). Large deviations of extreme eigenvalues of random matrices. Physical review letters, 97(16), 160201.
    Denuit, M., & Lu, Y. (2021). Wishart‐gamma random effects models with applications to nonlife insurance. Journal of Risk and Insurance, 88(2), 443-481.
    Dow, J., & Gorton, G. B. (2006). Noise traders (no. 12256).
    Dyson, F. J. (1971). Distribution of eigenvalues for a class of real symmetric martices. Revista Mexicana de Física, 20(4), 7.
    Dyson, F. J., & Mehta, M. L. (1963). Statistical theory of the energy levels of complex systems. Iv. Journal of Mathematical Physics, 4(5), 701-712.
    Edelman, A. (1988). Eigenvalues and condition numbers of random matrices. SIAM journal on matrix analysis and applications, 9(4), 543-560.
    Edmonds, J. (1965). Paths, trees, and flowers. Canadian Journal of mathematics, 17, 449-467.
    El Ouadghiri, I., & Uctum, R. (2016). Jumps in equilibrium prices and asymmetric news in foreign exchange markets. Economic Modelling, 54, 218-234.
    Elfving, G. (1947). A simple method of deducing certain distributions connected with multivariate sampling. Scandinavian Actuarial Journal, 1947(1), 56-74.
    Erdős, P., & Rényi, A. (1959). On random graphs i. Publ. math. debrecen, 6(290-297), 18.
    Erdős, P., & Rényi, A. (1960). On the evolution of random graphs. Publ. Math. inst. Hungar. Acad. Sci, 5(1), 17-60.
    Erdős, P., & Rényi, A. (1961). On the strength of connectedness of a random graph. Acta Mathematica Hungarica, 12(1), 261-267.
    Fama, E. F. (1970). Session topic: Stock market price behavior session chairman: Burton g. Malkiel efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25(2), 383-417.
    Fama, E. F. (1998). Market efficiency, long-term returns, and behavioral finance. Journal of Financial economics, 49(3), 283-306.
    Fama, E. F., & French, K. R. (1988). Permanent and temporary components of stock prices. Journal of Political Economy, 96(2), 246-273.
    Fan, X., Wang, Y., & Wang, D. (2021). Network connectedness and china's systemic financial risk contagion——an analysis based on big data. Pacific-Basin Finance Journal, 68, 101322.
    Fiedor, P. (2014). Networks in financial markets based on the mutual information rate. Physical Review E, 89(5), 052801.
    Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of eugenics, 7(2), 179-188.
    Fonseca, J. D., Grasselli, M., & Tebaldi, C. (2007). Option pricing when correlations are stochastic: An analytical framework. Review of Derivatives Research, 10(2), 151-180.
    Fortunato, S. (2010). Community detection in graphs. Physics reports, 486(3-5), 75-174.
    French, K. R., & Roll, R. (1986). Stock return variances: The arrival of information and the reaction of traders. Journal of Financial economics, 17(1), 5-26.
    Fu, Z., Liu, G., & Guo, L. (2019). Sequential quadratic programming method for nonlinear least squares estimation and its application. Mathematical problems in engineering, 2019.
    Gai, P., & Kapadia, S. (2010). Contagion in financial networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2120), 2401-2423.
    Gao, Z., Zeng, H., Zhang, X., Wu, H., Zhang, R., Sun, Y., Du, Q., Zhao, Z., Li, Z., & Zhao, F. (2024). Exploring tourist spatiotemporal behavior differences and tourism infrastructure supply–demand pattern fusing social media and nighttime light remote sensing data. International Journal of Digital Earth, 17(1), 2310723.
    Gemmill, G., & Thomas, D. C. (2002). Noise trading, costly arbitrage, and asset prices: Evidence from closed‐end funds. The Journal of Finance, 57(6), 2571-2594.
    Glasserman, P., & Young, H. P. (2016). Contagion in financial networks. Journal of Economic Literature, 54(3), 779–831.
    Goh, K.-I., Kahng, B., & Kim, D. (2001). Universal behavior of load distribution in scale-free networks. Physical review letters, 87(27), 278701.
    Gourieroux, C., Jasiak, J., & Sufana, R. (2009). The wishart autoregressive process of multivariate stochastic volatility. Journal of Econometrics, 150(2), 167-181.
    Gourieroux, C., Monfort, A., & Sufana, R. (2010). International money and stock market contingent claims. Journal of International Money and Finance, 29(8), 1727-1751.
    Gouriéroux, C., & Sufana, R. (2004). Derivative pricing with multivariate stochastic volatility: Application to credit risk. Les Cahiers du CREF of HEC Montréal Working Paper No. CREF, 04-09.
    Grossman, S. (1976). On the efficiency of competitive stock markets where trades have diverse information. The Journal of Finance, 31(2), 573-585.
    Guhr, T., Müller–Groeling, A., & Weidenmüller, H. A. (1998). Random-matrix theories in quantum physics: Common concepts. Physics reports, 299(4-6), 189-425.
    Haldane, A. G., & May, R. M. (2011). Systemic risk in banking ecosystems. Nature, 469(7330), 351-355.
    Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Representation learning on graphs: Methods and applications. arXiv preprint arXiv:1709.05584.
    Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. ACM sigmod record, 29(2), 1-12.
    Harris, M., & Raviv, A. (1993). Differences of opinion make a horse race. The review of financial studies, 6(3), 473-506.
    Haugen, R. A. (2002). The inefficient stock market: What pays off and why (2nd ed.). Prentice Hall.
    Higham., D. J. (2001). An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review, 43(3), 525-546.
    Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of educational psychology, 24(6), 417.
    Hu, S., Yang, H., Cai, B., & Yang, C. (2013). Research on spatial economic structure for different economic sectors from a perspective of a complex network. Physica A: Statistical Mechanics and its Applications, 392(17), 3682-3697.
    Hu, X. D., Hwang, F. K., & Li, W.-C. I. W. (1993). Most reliable double loop networks in survival reliability. Networks, 23(5), 451-458.
    Huang, W.-Q., Zhuang, X.-T., & Yao, S. (2009). A network analysis of the chinese stock market. Physica A: Statistical Mechanics and its Applications, 388(14), 2956-2964.
    Hwang, F., & Winnie Li, W.-C. (1994). Connectivity reliabilities and hamiltonian reliabilities of linear and circular consecutive-2 link systems. International Journal of Reliability, Quality and Safety Engineering, 1(02), 247-256.
    Hwang, F. K., & Li, W.-C. W. (1991). Reliabilities of double-loop networks. Probability in the Engineering and Informational Sciences, 5(3), 255-272.
    Hwang, F. K., & Xu, Y. H. (1987). Double loop networks with minimum delay. Discrete Mathematics, 66(1), 109-118.
    Hyvärinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applications. Neural Networks, 13(4-5), 411-430.
    Inglada-Perez, L. (2020). A comprehensive framework for uncovering non-linearity and chaos in financial markets: Empirical evidence for four major stock market indices. Entropy, 22(12), 1435.
    Iori, G., De Masi, G., Precup, O. V., Gabbi, G., & Caldarelli, G. (2008). A network analysis of the italian overnight money market. Journal of Economic Dynamics and Control, 32(1), 259-278.
    Jalali, Z. S., Rezvanian, A., & Meybodi, M. R. (2016). Social network sampling using spanning trees. International Journal of Modern Physics C, 27(05), 1650052.
    Jensen, M. C. (1978). Some anomalous evidence regarding market efficiency. Journal of Financial economics, 6(2/3), 95-101.
    Ji, J., Huang, C., Cao, Y., & Hu, S. (2019). The network structure of chinese finance market through the method of complex network and random matrix theory. Concurrency and Computation: Practice and Experience, 31(9), e4877.
    Kai-Ineman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 363-391.
    Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
    Kiyotaki, N., & Moore, J. (1997). Credit cycles. Journal of Political Economy, 105(2), 211-248.
    Kraft, D. (1988). A software package for sequential quadratic programming. Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt.
    Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical society, 7(1), 48-50.
    Kumar, S., Kumar, S., & Kumar, P. (2020). Diffusion entropy analysis and random matrix analysis of the indian stock market. Physica A: Statistical Mechanics and its Applications, 560, 125122.
    Kyle, A. S. (1985). Continuous auctions and insider trading. Econometrica, 53(6), 1315-1335.
    La Bua, G., & Marazzina, D. (2019). Calibration and advanced simulation schemes for the wishart stochastic volatility model. Quantitative Finance, 19(6), 997-1016.
    La Bua, G., & Marazzina, D. (2021). On the application of wishart process to the pricing of equity derivatives: The multi-asset case. Computational Management Science, 18(2), 149-176.
    Laloux, L., Cizeau, P., Bouchaud, J.-P., & Potters, M. (1999). Noise dressing of financial correlation matrices. Physical review letters, 83(7), 1467.
    Laloux, L., Cizeau, P., Potters, M., & Bouchaud, J.-P. (2000). Random matrix theory and financial correlations. International Journal of Theoretical and Applied Finance, 3(03), 391-397.
    Lee, C. M. C., Shleifer, A., & Thaler, R. H. (1990). Anomalies: Closed-end mutual funds. Journal of Economic Perspectives, 4(4), 153-164.
    Lloyd, S. (1982). Least squares quantization in pcm. IEEE transactions on information theory, 28(2), 129-137.
    Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of atmospheric sciences, 20(2), 130-141.
    Ma, W.-J., Hu, C.-K., & Amritkar, R. E. (2004). Stochastic dynamical model for stock-stock correlations. Physical Review E, 70(2), 026101.
    MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley symposium on Mathematical Statistics and Probability,
    Mandelbrot, B. (1963). New methods in statistical economics. Journal of Political Economy, 71(5), 421-440.
    Marčenko, V. A., & Pastur, L. A. (1967). Distribution of eigenvalues for some sets of random matrices. Matematicheskii Sbornik, 114(4), 507-536.
    Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91.
    Mathiang, K., Warunsin, K., & Phumsaranakhom, P. (2022, 21-23 Dec. 2022). The optimized proportion for beef cattle feed using sequential least squares programming. 2022 26th International Computer Science and Engineering Conference (ICSEC),
    May, R. M. (1976). Simple mathematical models with very complicated dynamics. Nature, 261(5560), 459-467.
    Mayers, D., Shivdasani, A., & Smith Jr, C. W. (1997). Board composition and corporate control: Evidence from the insurance industry. Journal of Business, 33-62.
    Mayers, D., & Smith, C. W. (1994). Managerial discretion, regulation, and stock insurer ownership structure. The Journal of Risk and Insurance, 61(4), 638-655.
    Mayers, D., & Smith Jr, C. W. (1981). Contractual provisions, organizational structure, and conflict control in insurance markets. Journal of Business, 407-434.
    Mayers, D., & Smith Jr, C. W. (1994). Managerial discretion and stock insurance company ownership structure. Journal of Risk and Insurance, 61, 638-655.
    Mehta, M. L., & Dyson, F. J. (1963). Statistical theory of the energy levels of complex systems. V. Journal of Mathematical Physics, 4(5), 713-719.
    Merton, R. C. (1995). Financial innovation and the management and regulation of financial institutions. Journal of Banking & Finance, 19(3-4), 461-481.
    Minoiu, C., & Reyes, J. A. (2013). A network analysis of global banking: 1978–2010. Journal of Financial Stability, 9(2), 168-184.
    Mirlin, A. D. (2000). Statistics of energy levels and eigenfunctions in disordered systems. Physics reports, 326(5-6), 259-382.
    Montagna, M., & Kok, C. (2016). Multi-layered interbank model for assessing systemic risk (ECB Working Paper Series, Issue.
    Neumann, J. v. (1932). Proof of the quasi-ergodic hypothesis. Proceedings of the National Academy of Sciences, 18(1), 70-82.
    Newman, M. E. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167-256.
    Newman, M. E. (2004). Fast algorithm for detecting community structure in networks. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 69(6), 066133.
    Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23), 8577-8582.
    Ng, A., Jordan, M., & Weiss, Y. (2001). On spectral clustering: Analysis and an algorithm. Advances in neural information processing systems, 14.
    Nier, E., Yang, J., Yorulmazer, T., & Alentorn, A. (2007). Network models and financial stability. Journal of Economic Dynamics and Control, 31(6), 2033-2060.
    Palla, G., Derényi, I., Farkas, I., & Vicsek, T. (2005). Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435(7043), 814-818.
    Pastor-Satorras, R., & Vespignani, A. (2001). Epidemic spreading in scale-free networks. Physical review letters, 86(14), 3200.
    Pavon, W., Torres, M., & Inga, E. (2024). Integrating minimum spanning tree and milp in urban planning: A novel algorithmic perspective. Buildings, 14(1), 213.
    Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical review letters, 64(8), 821.
    Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social representations. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
    Pharasi, H. K., Sadhukhan, S., Majari, P., Chakraborti, A., & Seligman, T. H. (2021). Dynamics of the market states in the space of correlation matrices with applications to financial markets. arXiv preprint arXiv:2107.05663.
    Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L. A. N., Guhr, T., & Stanley, H. E. (2002). Random matrix approach to cross correlations in financial data. Physical Review E, 65(6), 066126.
    Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L. N., & Stanley, H. E. (2000). A random matrix theory approach to financial cross-correlations. Physica A: Statistical Mechanics and its Applications, 287(3-4), 374-382.
    Poledna, S., Molina-Borboa, J. L., Martínez-Jaramillo, S., Van Der Leij, M., & Thurner, S. (2015). The multi-layer network nature of systemic risk and its implications for the costs of financial crises. Journal of Financial Stability, 20, 70-81.
    Pons, P., & Latapy, M. (2006). Computing communities in large networks using random walks. Journal of graph algorithms and applications, 10(2), 191-218.
    Potters, M., Bouchaud, J.-P., & Laloux, L. (2005). Financial applications of random matrix theory: Old laces and new pieces. arXiv preprint physics/0507111.
    Prim, R. C. (1957). Shortest connection networks and some generalizations. The Bell System Technical Journal, 36(6), 1389-1401.
    Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community structures in large-scale networks. Physical Review E, 76(3), 036106.
    Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences, 105(4), 1118-1123.
    Ryu, D., & Yang, H. (2020). Noise traders, mispricing, and price adjustments in derivatives markets. The European Journal of Finance, 26(6), 480-499.
    Schäfer, R., Nilsson, N. F., & Guhr, T. (2010). Power mapping with dynamical adjustment for improved portfolio optimization. Quantitative Finance, 10(1), 107-119.
    Sengupta, A. M., & Mitra, P. P. (1999). Distributions of singular values for some random matrices. Physical Review E, 60(3), 3389.
    Sharifi, S., Crane, M., Shamaie, A., & Ruskin, H. (2004). Random matrix theory for portfolio optimization: A stability approach. Physica A: Statistical Mechanics and its Applications, 335(3-4), 629-643.
    Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance, 19(3), 425-442.
    Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on pattern analysis and machine intelligence, 22(8), 888-905.
    Shibata, N., Kajikawa, Y., Takeda, Y., & Matsushima, K. (2008). Detecting emerging research fronts based on topological measures in citation networks of scientific publications. Technovation, 28(11), 758-775.
    Shiller, R. J. (1981). Do stock prices move too much to be justified by subsequent changes in dividends? The American Economic Review, 71(3), 16.
    Simon, H. A. (1972). Theories of bounded rationality. Decision and Organization, 1(1), 161-176.
    Spelta, A., Pecora, N., & Pagnottoni, P. (2022). Chaos based portfolio selection: A nonlinear dynamics approach. Expert Systems with Applications, 188, 116055.
    Sverdrup, E. (1947). Derivation of the wishart distribution of the second order sample moments by straightforward integration of a multiple integral. Scandinavian Actuarial Journal, 1947(1), 151-166.
    Thomas, G., & Bernd, K. (2003). A new method to estimate the noise in financial correlation matrices. Journal of Physics A: Mathematical and General, 36(12), 3009.
    Thouless, D. J. (1974). Electrons in disordered systems and the theory of localization. Physics reports, 13(3), 93-142.
    Upper, C., & Worms, A. (2004). Estimating bilateral exposures in the german interbank market: Is there a danger of contagion? European economic review, 48(4), 827-849.
    Vandewalle, N., Brisbois, F., & Tordoir, X. (2001). Non-random topology of stock markets. Quantitative Finance, 1(3), 372-374.
    Vinayak, Schäfer, R., & Seligman, T. H. (2013). Emerging spectra of singular correlation matrices under small power-map deformations. Physical Review E, 88(3), 032115.
    Vinayak, & Seligman, T. H. (2014). Time series, correlation matrices and random matrix models. AIP Conference Proceedings, 1575(1), 196-217.
    Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and computing, 17, 395-416.
    Wang, G.-J., Xie, C., Lin, M., & Stanley, H. E. (2017). Stock market contagion during the global financial crisis: A multiscale approach. Finance Research Letters, 22, 163-168.
    Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440-442.
    Wigner, E. P. (1951). On the statistical distribution of the widths and spacings of nuclear resonance levels. Mathematical Proceedings of the Cambridge Philosophical Society,
    Wigner, E. P. (1958). On the distribution of the roots of certain symmetric matrices. Annals of Mathematics, 325-327.
    Winnie Li, W.-C. (2020). The ramanujan conjecture and its applications. Philosophical Transactions of the Royal Society A, 378(2163), 20180441.
    Wishart, J. (1928). The generalised product moment distribution in samples from a normal multivariate population. Biometrika, 32-52.
    Wu, J., Li, X., Jiao, L., Wang, X., & Sun, B. (2013). Minimum spanning trees for community detection. Physica A: Statistical Mechanics and its Applications, 392(9), 2265-2277.
    Yang, C., Mao, J., Qian, X., & Wu, E. Q. (2024). Robustness optimization of air transportation network with total route cost constraint. IEEE Transactions on Automation Science and Engineering, 1-15.
    Young, L.-S. (2018). Dynamical systems evolving. Proceedings of the International Congress of Mathematicians: Rio de Janeiro 2018,
    Zaki, M. J. (2000). Scalable algorithms for association mining. IEEE transactions on knowledge and data engineering, 12(3), 372-390.
    Zhang, H., & Kalev, P. S. (2021). How noise trading affects informational efficiency: Evidence from an order-driven market. Pacific-Basin Finance Journal, 68, 101605.
    Description: 博士
    國立政治大學
    風險管理與保險學系
    106358503
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0106358503
    Data Type: thesis
    Appears in Collections:[風險管理與保險學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    850301.pdf24046KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback