English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118786/149850 (79%)
Visitors : 82241658      Online Users : 3403
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/158518


    Title: 圖神經網路於台灣股市長期股票排名預測之應用:基於橫截面數據與優化排序方法
    Graph Neural Networks for Long-Term Stock Ranking Prediction in the Taiwan Stock Market: An Approach Based on Cross-Sectional Data and Optimized Learning to Rank
    Authors: 鄭玉海
    Cheng, Yu-Hai
    Contributors: 黃泓智
    鄭玉海
    Cheng, Yu-Hai
    Keywords: 學習排序
    圖神經網路
    股票排名預測
    LambdaRank
    集成學習
    量化投資
    Learning to Rank
    Graph Neural Network
    Stock Ranking Prediction
    LambdaRank
    Ensemble Learning
    Quantitative Investment
    Date: 2025
    Issue Date: 2025-08-04 14:11:01 (UTC+8)
    Abstract: 圖神經網路(GNN)已經在多個領域展現出優良的表現,在股票排名預測中展現了捕捉複雜關聯的潛力,但當前主流模型普遍採用的「改良式 Pointwise 方法」存在理論缺陷,即「目標錯配」與「雜訊敏感」,導致模型在優化過程中易受金融市場低信噪比的影響。為解決此問題,本研究提出一個結合多層感知器(MLP)、圖注意力網路(GAT)與 Listwise 排序方法 LambdaRank 的新型股票排名預測框架。該框架首先利用 MLP 學
    習個股的橫截面特徵,再透過 GAT 建模同產業股票間的關聯性,並以 LambdaRank 為優化目標,從根本上使模型的學習方向與排序任務的本質保持一致。此外,本研究設計並驗證了一套創新的「頂部排名優化策略」,引導模型聚焦於提升最具投資價值的頂級股票之預測準確性。
    透過對台灣股市 2020 年至 2024 年的滾動窗口回測,本研究提出的完整模型展現了卓越的績效,顯著優於市場基準與基線模型。消融實驗進一步證實,「頂部排名優化」策略與「GNN 模塊」均為模型取得成功的關鍵組件,移除任何一者皆會導致績效顯著衰退。研究亦發現,透過與泛化能力更強的模型進行集成,能有效緩解本框架在較大選股數中可能存在的「局部過擬合」風險,從而構建出一個績效更佳且更穩健的投資決策系統。總體而言,本研究不僅提供了一個理論更健全、實證更有效的智能選股框架,也
    為深度學習模型在金融市場的設計、評估與應用提供了深刻的洞見。
    Graph Neural Networks (GNNs) have demonstrated superior performance across various domains and exhibit significant potential in capturing complex relationships for stock
    ranking prediction. However, prevailing GNN stock ranking models commonly employ a "modified pointwise approach," which suffers from theoretical flaws, specifically "objective mismatch" and "noise sensitivity." These issues render models susceptible to the low signal-to-noise ratio inherent in financial markets during optimization. To address these challenges, this study proposes a novel stock ranking prediction framework that integrates a Multi-Layer
    Perceptron (MLP), Graph Attention Network (GAT), and the Listwise ranking method,LambdaRank.The proposed framework first utilizes an MLP to learn the cross-sectional features of individual stocks. Subsequently, a GAT models the relationships among stocks within the same industry. By adopting LambdaRank as the optimization objective, the framework fundamentally aligns the model's learning direction with the intrinsic nature of the ranking
    task. Furthermore, this research designs and validates an innovative "top-rank optimization strategy" to guide the model in focusing on improving the prediction accuracy of the most investment-worthy, top-tier stocks.
    Through rolling-window backtesting on the Taiwan stock market from 2020 to 2024, the proposed model demonstrates exceptional performance, significantly outperforming market
    benchmarks and baseline model. Ablation studies confirm that both the "top-rank optimization" strategy and the "GNN module" are critical components for the success, with
    the removal of either leading to a substantial decline in performance. The study also reveals that integrating with models possessing stronger generalization capabilities can effectively mitigate the potential risk of "local overfitting" in this framework when dealing with a larger
    selection of stocks, thereby constructing a more robust investment decision system with enhanced performance. Overall, this research not only provides a theoretically sound and empirically effective intelligent stock selection framework but also offers profound insights into the design, evaluation, and application of deep learning models in financial markets.
    Reference: 1. Alsulmi, M. (2022). From Ranking Search Results to Managing Investment Portfolios: Exploring Rank-Based Approaches for Portfolio Stock Selection. Electronics (Basel), 11(23), Article 4019. https://doi.org/10.3390/electronics11234019
    2. Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121–167. https://doi.org/10.1023/A:1009715923555
    3. Burges, C. J. C. (2010). From RankNet to LambdaRank to LambdaMART: An overview (Technical Report MSR-TR-2010-82). Retrieved from Microsoft Research website: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-TR-2010-82.pdf
    4. Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir, M., Anil, R., Haque, Z., Hong, L., Jain, V., Liu, X., & Shah, H. (2016). Wide & Deep Learning for Recommender Systems. https://doi.org/10.48550/arxiv.1606.07792
    5. Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-, 785–794. https://doi.org/10.1145/2939672.2939785
    6. Dash, R. K., Nguyen, T. N., Cengiz, K., & Sharma, A. (2023). Fine-tuned support vector regression model for stock predictions. Neural Computing & Applications, 35(32), 23295–23309. https://doi.org/10.1007/s00521-021-05842-w
    7. Fey, M., & Lenssen, J. E. (2019). Fast Graph Representation Learning with PyTorch Geometric. https://doi.org/10.48550/arxiv.1903.02428
    8. Feng, F., He, X., Wang, X., Luo, C., Liu, Y., & Chua, T.-S. (2019). Temporal Relational Ranking for Stock Prediction. ACM Transactions on Information Systems, 37(2), Article 27. https://doi.org/10.1145/3309547
    9. Gastinger, J., Nicolas, S., Stepić, D., Schmidt, M., & Schülke, A. (2021). A study on ensemble learning for time series forecasting and the need for meta-learning. In 2021 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). Shenzhen, China: IEEE. doi:10.1109/IJCNN52387.2021.9533378
    10. Hsu, Y.-L., Tsai, Y.-C., & Li, C.-T. (2022). FinGAT: Financial Graph Attention Networks for Recommending Top-K Profitable Stocks. IEEE Transactions on Knowledge and Data Engineering, 35(1), 1–1. https://doi.org/10.1109/TKDE.2021.3079496
    11. Han, Y., Kim, J., & Enke, D. (2023). A machine learning trading system for the stock market based on N-period Min-Max labeling using XGBoost. Expert Systems with Applications, 211, Article 118581. https://doi.org/10.1016/j.eswa.2022.118581
    12. Kumbure, M. M., Lohrmann, C., Luukka, P., & Porras, J. (2022). Machine learning techniques and data for stock market forecasting: A literature review. Expert Systems with Applications, 197, Article 116659. https://doi.org/10.1016/j.eswa.2022.116659
    13. Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 4768–4777). Curran Associates Inc. https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
    14. López de Prado, M. (2018). Advances in financial machine learning. Hoboken, NJ: John Wiley & Sons.
    15. Ma, T., & Tan, Y. (2022). Stock Ranking with Multi-Task Learning. Expert Systems with Applications, 199, Article 116886. https://doi.org/10.1016/j.eswa.2022.116886
    16. Narendra Babu, C., & Eswara Reddy, B. (2015). Prediction of selected Indian stock using a partitioning–interpolation based ARIMA–GARCH model. Applied Computing & Informatics, 11(2), 130–143. https://doi.org/10.1016/j.aci.2014.09.002
    17. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). PyTorch: An Imperative Style, High-Performance Deep Learning Library. https://doi.org/10.48550/arxiv.1912.01703
    18. Patel, H., & Sahni, S. (2022). Exploring Explainability Methods for Graph Neural Networks. https://doi.org/10.48550/arxiv.2211.01770
    19. Qiao, Y., Xia, Y., Li, X., Li, Z., & Ge, Y. (2023). Higher-order Graph Attention Network for Stock Selection with Joint Analysis. https://doi.org/10.48550/arxiv.2306.15526
    20. Rahangdale, A., & Raut, S. (2019). Machine Learning Methods for Ranking. International Journal of Software Engineering and Knowledge Engineering, 29(6), 729–761. https://doi.org/10.1142/S021819401930001X
    21. Strader, T. J., Rozycki, J. J., ROOT, T. H., & Huang, Y.-H. J. (2020). Machine Learning Stock Market Prediction Studies: Review and Research Directions. Journal of International Technology and Information Management, 28(4), 63–83. https://doi.org/10.58729/1941-6679.1435
    22. Song, G., Zhao, T., Wang, S., Wang, H., & Li, X. (2023). Stock ranking prediction using a graph aggregation network based on stock price and stock relationship information. Information Sciences, 643, Article 119236. https://doi.org/10.1016/j.ins.2023.119236
    23. Scholkemper, M., Wu, X., Jadbabaie, A., & Schaub, M. T. (2024). Residual Connections and Normalization Can Provably Prevent Oversmoothing in GNNs. https://doi.org/10.48550/arxiv.2406.02997
    24. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.
    25. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2021). A Comprehensive Survey on Graph Neural Networks. IEEE Transaction on Neural Networks and Learning Systems, 32(1), Article 9046288. https://doi.org/10.1109/TNNLS.2020.2978386
    26. Xiang, S., Cheng, D., Shang, C., Zhang, Y., & Liang, Y. (2022). Temporal and Heterogeneous Graph Neural Network for Financial Time Series Prediction. Proceedings of the 31st ACM International Conference on Information & Knowledge Management, 3584–3593. https://doi.org/10.1145/3511808.3557089
    27. Zhang, L., Yin, Y., You, Y., Hajiyev, A., Xu, J., Duca, G., García Márquez, F. P., Ali Hassan, M. H., & Altiparmak, F. (2021). Portfolio Models Based on Fundamental Analysis Using Learning to Rank. In Proceedings of the Fifteenth International Conference on Management Science and Engineering Management (Vol. 79, pp. 352–365). Springer International Publishing AG. https://doi.org/10.1007/978-3-030-79206-0_27
    28. Zhang, W., Chen, Z., Miao, J., & Liu, X. (2022). Research on Graph Neural Network in Stock Market. Procedia Computer Science, 214(C), 786–792. https://doi.org/10.1016/j.procs.2022.11.242
    Description: 碩士
    國立政治大學
    風險管理與保險學系
    112358015
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112358015
    Data Type: thesis
    Appears in Collections:[風險管理與保險學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    801501.pdf2187KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback