English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 117629/148660 (79%)
Visitors : 71674749      Online Users : 11785
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/158584


    Title: 以機器學習探討動能現象 -- 以台灣股市為例
    Exploring Momentum Phenomena in Taiwan Stock Market through Machine Learning
    Authors: 章翔軒
    Chang, Hsiang-Hsuan
    Contributors: 羅秉政
    Kendro Vincent
    章翔軒
    Chang,Hsiang-Hsuan
    Keywords: 橫斷面動能
    時間序列動能
    機器學習
    投資組合
    Cross-Sectional Momentum
    Time Series Momentum
    Machine Learning
    Portfolio
    Date: 2025
    Issue Date: 2025-08-04 14:31:21 (UTC+8)
    Abstract: 在股市動能現象的研究中,主要分為橫斷面動能(Cross-Sectional Momentum)與時間序列動能(Time Series Momentum)。前者著重於資產在同期相較於其他資產的報酬率如果具有相對優勢,此趨勢預期將會持續;後者則關注某個資產的報酬率是否為正,若資產的報酬率大於0,則預期該趨勢將會延續。本研究以台灣股票為樣本,透過機器學習預測的方式探討兩種動能現象,透過羅吉斯迴歸、決策樹集成式學習(XGBoost、隨機森林)與類神經網路進行預測;接者將預測結果以 Goyal and Jegadeesh (2018) 的加權方式形成不同投資組合,比較各模型和加權方式之間的獲利表現差異。實證結果顯示,橫斷面動能做為被解釋變數在同模型預測的準確率高於時間序列動能,但整體預測上具有提升空間;橫斷面動能投資組合報酬多數高於時間序列動能投資組合報酬,但只有部分模型預測組建的橫斷面動能組合在報酬率上勝過純粹以報酬率建構的基準動能組合。
    In the study of stock market momentum phenomena, two primary types are commonly examined: Cross-Sectional Momentum (CSM) and Time Series Momentum (TSM). CSM focuses on the relative performance of assets compared to one another during the same period—if an asset outperforms its peers, the trend is expected to continue. In contrast, TSM emphasizes the past return of a single asset—if an asset’s return is positive, it is expected that the trend will persist.
    This study uses Taiwan’s stock market as the empirical setting and applies machine learning techniques to investigate both types of momentum. Models used include logistic regression, tree-based ensemble methods (XGBoost and Random Forest), and neural networks. Based on the prediction results, investment portfolios are constructed following the weighting methodology proposed by Goyal and Jegadeesh (2018), and the profitability across models and weighting schemes is compared. The empirical findings show that using CSM as the target variable leads to higher prediction accuracy than TSM under the same model framework. However, overall predictive performance still has room for improvement. In terms of portfolio returns, CSM-based strategies generally outperform those based on TSM. Nonetheless, only a subset of CSM portfolios constructed from machine learning predictions achieved higher returns than the benchmark momentum portfolios built solely on raw return rankings.
    Reference: 1. Ballings, M., Van den Poel, D., Hespeels, N., & Gryp, R. (2015). Evaluating multiple classifiers for stock price direction prediction. Expert Systems with Applications, 42(20), 7046–7056.
    2. Bui, D. G., Kong, D.-R., Lin, C.-Y., & Lin, T.-C. (2023). Momentum in machine learning: Evidence from the Taiwan stock market. Pacific-Basin Finance Journal, 82, 102178.
    3. Carhart, M. M. (1997). On persistence in mutual fund performance. The Journal of Finance, 52(1), 57–82.
    4. Chakrabarti, G. (2015). Time-series momentum trading strategies in the global stock market. Business Economics, 50, 80–90.
    5. Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 785–794.
    6. Cujean, J., & Hasler, M. (2017). Why does return predictability concentrate in bad times? The Journal of Finance, 72(6), 2717–2758.
    7. D’Souza, I., Srichanachaichok, V., Wang, G. J., & Yao, C. Y. (2016). The enduring effect of time-series momentum on stock returns over nearly 100-years. Asian Finance Association (AsianFA) 2016 Conference.
    8. Daniel, K., & Moskowitz, T. J. (2016). Momentum crashes. Journal of Financial Economics, 122(2), 221–247.
    9. Deboeck, G. J. (1994). Trading on the edge: neural, genetic, and fuzzy systems for chaotic financial markets (Vol. 39). John Wiley & Sons.
    10. Fama, E. F. (1970). Efficient capital markets. Journal of Finance, 25(2), 383–417.
    11. Fama, E. F., & French, K. R. (1988). Permanent and temporary components of stock prices. Journal of Political Economy, 96(2), 246–273.
    12. ———. (1996). Multifactor explanations of asset pricing anomalies. The Journal of Finance, 51(1), 55–84.
    13. ———. (2015). A five-factor asset pricing model. Journal of Financial Economics, 116(1), 1–22.
    14. Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654–669.
    15. Goyal, A., & Jegadeesh, N. (2018). Cross-sectional and time-series tests of return predictability: What is the difference? The Review of Financial Studies, 31(5), 1784–1824.
    16. Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. The Review of Financial Studies, 33(5), 2223–2273.
    17. He, X.-Z., & Li, K. (2015). Profitability of time series momentum. Journal of Banking & Finance, 53, 140–157.
    18. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
    19. Hong, H., & Stein, J. C. (1999). A unified theory of underreaction, momentum trading, and overreaction in asset markets. The Journal of Finance, 54(6), 2143–2184.
    20. Huang, D., Li, J., Wang, L., & Zhou, G. (2020). Time series momentum: Is it there? Journal of Financial Economics, 135(3), 774–794.
    21. Jegadeesh, N. (1990). Evidence of predictable behavior of security returns. The Journal of Finance, 45(3), 881–898.
    22. Jegadeesh, N., & Titman, S. (1993). Returns to buying winners and selling losers: Implications for stock market efficiency. The Journal of Finance, 48(1), 65–91.
    23. Kim, A. Y., Tse, Y., & Wald, J. K. (2016). Time series momentum and volatility scaling. Journal of Financial Markets, 30, 103–124.
    24. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv Preprint arXiv:1412.6980.
    25. Krauss, C., Do, X. A., & Huck, N. (2017). Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500. European Journal of Operational Research, 259(2), 689–702.
    26. Lehmann, B. N. (1990). Fads, martingales, and market efficiency. The Quarterly Journal of Economics, 105(1), 1–28.
    27. Leung, M. T., Daouk, H., & Chen, A.-S. (2000). Forecasting stock indices: a comparison of classification and level estimation models. International Journal of Forecasting, 16(2), 173–190.
    28. Lim, B. Y., Wang, J. G., & Yao, Y. (2018). Time-series momentum in nearly 100 years of stock returns. Journal of Banking & Finance, 97, 283–296.
    29. Lim, B., Zohren, S., & Roberts, S. (2019). Enhancing time series momentum strategies using deep neural networks. arXiv Preprint arXiv:1904.04912.
    30. Lo, A. W. (1991). Long-term memory in stock market prices. Econometrica: Journal of the Econometric Society, 1279–1313.
    31. Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30.
    32. Moskowitz, T. J., Ooi, Y. H., & Pedersen, L. H. (2012). Time series momentum. Journal of Financial Economics, 104(2), 228–250.
    33. Pan, S., Long, S. C., Wang, Y., & Xie, Y. (2023). Nonlinear asset pricing in Chinese stock market: A deep learning approach. International Review of Financial Analysis, 87, 102627.
    34. Pesaran, M. H., & Timmermann, A. (1992). A simple nonparametric test of predictive performance. Journal of Business & Economic Statistics, 10(4), 461–465.
    35. Qin, Y., Pan, G., & Bai, M. (2020). Improving market timing of time series momentum in the Chinese stock market. Applied Economics, 52(43), 4711–4725.
    36. Takeuchi, L., & Lee, Y.-Y. A. (2013). Applying deep learning to enhance momentum trading strategies in stocks. In Technical Report. Stanford University Stanford, CA, USA.
    37. Zakamulin, V., & Giner, J. (2022). Time series momentum in the US stock market: Empirical evidence and theoretical analysis. International Review of Financial Analysis, 82, 102173.
    Description: 碩士
    國立政治大學
    金融學系
    110352031
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110352031
    Data Type: thesis
    Appears in Collections:[Department of Money and Banking] Theses

    Files in This Item:

    File Description SizeFormat
    203101.pdf5253KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback