English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 117578/148609 (79%)
Visitors : 70644301      Online Users : 10310
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/158587
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/158587


    Title: 氣候政策不確定性模擬投資組合之建構 — 以美國為例
    Factor Mimicking Portfolios for Climate Policy Uncertainty: Evidence from the U.S.
    Authors: 蔡沛秦
    Tsai, Pei-Chin
    Contributors: 羅秉政
    Kendro Vincent
    蔡沛秦
    Tsai, Pei-Chin
    Keywords: 模擬投資組合
    氣候政策不確定性
    Factor-mimicking portfolio
    Climate policy uncertainty
    Date: 2025
    Issue Date: 2025-08-04 14:31:58 (UTC+8)
    Abstract: 本研究旨在探討氣候政策不確定性(Climate Policy Uncertainty, CPU)風險之避險策略,並延伸 Engle et al. (2020) 之 mimicking portfolio 方法,建構一組能有效對應 CPU 創新項(AR(1) 殘差)波動的模擬投資組合。本文分別採用 S&P Global 與 Sustainalytics 兩家 ESG 評分機構所提供之 ESG 分數作為企業特徵,建構多空投資組合。實證結果顯示,使用 S&P Global ESG 整體分數建構的模擬投資組合,其組成建議增加低 ESG 評分之資產、減少高 ESG 評分資產配置,能有效對應氣候不確定性衝擊所帶來的風險;相對地,以 Sustainalytics 分數構建之投資組合則難以穩定捕捉此一衝擊。在樣本外測試中,採用擴張視窗法(Expanding Window)所建構之模擬投資組合,其報酬與氣候政策不確定性指數的創新項之相關性最高可達約 10%,顯示此方法具備一定程度之避險能力。傳統因子特徵(如規模與價值)納入後則未顯著提升整體表現。進一步採用 Bai-Perron 測試發現,CPU 指數於 2016 年 11 月川普當選時出現結構性變動,將樣本區分為川普當選前後進行子樣本分析,顯示政權更替後避險效果更為穩健。此外,本文亦延伸採用公司層級氣候風險指標作為特徵進行測試,惟其避險表現整體仍不及 S&P Global ESG 分數。
    This study explores hedging strategies against Climate Policy Uncertainty(CPU) risks by extending the mimicking portfolio approach of Engle et al.(2020). We construct long-short portfolios based on ESG scores from S&P Global and Sustainalytics, aiming to track the innovations (AR(1) residuals) of the CPU index. Empirical results show that portfolios formed using S&P Global scores—by overweighting brown assets—can better hedge CPU shocks, while those based on Sustainalytics perform less consistently. Using an expanding window method, the out-of-sample correlation with CPU innovations reaches up to 10%, suggesting moderate hedging effectiveness. A structural break is detected in November 2016, coinciding with Trump’s election, after which hedging performance improves notably. We further test alternative firm-level climate risk measures, but S&P Global ESG scores remain the most robust and representative characteristics for constructing CPU hedging portfolios.
    Reference: Adrian, T., E. Etula, and T. Muir (2014). Financial intermediaries and the cross-section of asset returns. The Journal of Finance 69(6), 2557–2596.
    Amihud, Y. (2002). Illiquidity and stock returns: cross-section and time-series effects. Journal of Financial Markets 5(1), 31–56.
    Asgharian, H. (2004). A comparative analysis of ability of mimicking portfolios in representing the background factors. Working Papers. Department of Economics, Lund University 10, Department of Economics, Lund University.
    Bai, J. and P. Perron (1998). Estimating and testing linear models with multiple structural changes. Econometrica 66(1), 47–78.
    Bai, J. and P. Perron (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics 18(1), 1–22.
    Baker, S. R., N. Bloom, and S. J. Davis (2016). Measuring economic policy uncertainty. The Quarterly Journal of Economics 131(4), 1593–1636.
    Basaglia, P., C. Berestycki, S. Carattini, A. Dechezleprêtre, and T. Kruse (2025). Climate policy uncertainty and firms’ and investors’ behavior. CESifo Working Paper No.11782. Available at SSRN: https://ssrn.com/abstract=5208076.
    Berestycki, C., S. Carattini, A. Dechezleprêtre, and T. Kruse (2022). Measuring and assessing the effects of climate policy uncertainty. OECD Publishing. https://dx.doi.org/10.1787/34483d83-en.
    Breeden, D. T., M. R. Gibbons, and R. H. Litzenberger (1989). Empirical tests of the consumption-oriented capm. The Journal of Finance 44(2), 231–262.
    Chan, K. F. and I. Malik (2022). Climate policy uncertainty and the cross-section of stock returns. Available at SSRN: https://ssrn.com/abstract=4075528.
    Chan, L. K., J. Karceski, and J. Lakonishok (1998). The risk and return from factors. Journal of Financial and Quantitative Analysis 33(2), 159–188.
    Chen, N.-F., R. Roll, and S. A. Ross (1986). Economic forces and the stock market. Journal of Business, 383–403.
    Cooper, I. and R. Priestley (2011). Real investment and risk dynamics. Journal of Financial Economics 101(1), 182–205.
    Di Marco, R., T. Dong, R. Malatincová, M. Reuter, and T. Strömsten (2023). Symbol or substance? scrutinizing the ‘risk transparency premise’in marketized sustainable finance: The case of tcfd reporting. Business Strategy and the Environment 32(6), 3027–3052.
    Edmans, A. (2023). The end of esg. Financial Management 52(1), 3–17.
    Engle, R. F., S. Giglio, B. Kelly, H. Lee, and J. Stroebel (2020). Hedging climate change news. The Review of Financial Studies 33(3), 1184–1216.
    Fama, E. F. and K. R. French (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics 33(1), 3–56.
    Fama, E. F. and K. R. French (2008). Dissecting anomalies. The Journal of Finance 63(4), 1653–1678.
    Fama, E. F. and J. D. MacBeth (1973). Risk, return, and equilibrium: Empirical tests. Journal of Political Economy 81(3), 607–636.
    Fried, S., K. Novan, and W. B. Peterman (2021). The macro effects of climate policy uncertainty. Finance and Economics Discussion Series 2021-018. Washington: Board of Governors of the Federal Reserve System. https://doi.org/10.17016/FEDS.2021.018.
    Fuss, S., J. Szolgayova, M. Obersteiner, and M. Gusti (2008). Investment under market and climate policy uncertainty. Applied Energy 85(8), 708–721.
    Gavriilidis, K. (2021). Measuring climate policy uncertainty. Available at SSRN: https://ssrn.com/abstract=3847388.
    Görgen, M., A. Jacob, M. Nerlinger, R. Riordan, M. Rohleder, and M. Wilkens (2020). Carbon risk. Available at SSRN: https://ssrn.com/abstract=2930897.
    Lamont, O. A. (2001). Economic tracking portfolios. Journal of Econometrics 105(1), 161–184.
    Liang, C., M. Umar, F. Ma, and T. L. Huynh (2022). Climate policy uncertainty and world renewable energy index volatility forecasting. Technological Forecasting and Social Change 182, 121810.
    Liu, M., Y. Cao, and R. X. Zhang (2024). Hedging climate change risk: A real-time market response approach. Available at SSRN: https://ssrn.com/abstract=4847914.
    Pukthuanthong, K., R. Roll, J. L. Wang, and T. Zhang (2019). A new method for factor-mimicking portfolio construction. Available at SSRN: https://ssrn.com/abstract=3341604.
    Roll, R. and A. Srivastava (2018). Mimicking portfolios. The Journal of Portfolio Management 44(5), 21–35.
    Sautner, Z., L. Van Lent, G. Vilkov, and R. Zhang (2023). Firm-level climate change exposure. The Journal of Finance 78(3), 1449–1498.
    Vassalou, M. (2003). News related to future gdp growth as a risk factor in equity returns. Journal of Financial Economics 68(1), 47–73.
    Description: 碩士
    國立政治大學
    金融學系
    112352008
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112352008
    Data Type: thesis
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    200801.pdf8064KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback