English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118628/149684 (79%)
Visitors : 79982946      Online Users : 1835
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/158790


    Title: 基於 SFBT 架構探討 AI 協作中的行為建議對個體生涯自我效能的影響
    The effect of SFBT-based behavioral advice on career self-efficacy: an AI-Human collaboration approach
    Authors: 紀玟伶
    Chi, Wen-Ling
    Contributors: 陳宜秀
    廖峻鋒

    Chen, Yi-Hsiu
    Liao, Chun-Feng

    紀玟伶
    Chi, Wen-Ling
    Keywords: 人工智慧
    心理健康
    生涯自我效能
    人機互動
    人智協作
    對話型機器人
    AI
    Mental health
    Career self-efficacy
    HCI
    Chatbot
    Human-AI Collaboration
    Date: 2025
    Issue Date: 2025-08-04 15:50:59 (UTC+8)
    Abstract: 當個體遇到求職的挑戰,伴隨而來的情緒困擾或是壓力,除了選擇自身勇敢面對之外,還能有其他支持性的資源可以使用。目前在社會或校園中有輔導和諮商的管道,都是個體可利用的資源。輔導與諮商能夠幫助個體處理內在認知,覺察感受,此過程中不僅能夠獲得同理與支持,還能促進自我理解,更有方法面對困擾自身的議題。

    隨著科技的發展,運用人工智慧的輔助,能夠為諮商服務提供新的發展性。人工智慧應用於心理健康領域的協助應用,因其能夠突破時空限制,給予個體更即時的幫助與建議,也能為個體提供另一個求助資源。因此,希望透過本研究探索人工智慧使用焦點解決短期治療(solution-focused brief therapy, SFBT),將其應用於輔導個體探索生涯的過程,理解人工智慧如何與個體雙向互動和協作,在評估個體能力之後,給予聚焦問題的行動解方,並且觀察人工智慧在提供個體執行建議後,其是否能夠對個體的生涯自我效能產生正向影響,並協助減緩壓力。

    本研究採用單因子組間設計實驗法,將30位參與受試者隨機分配至三個組別:「AI協作組」、「文字引導組」、「獨立完成組」。實驗操弄變項為不同「接收到行為建議的方式」,依變數為「生涯自我效能」和「壓力值」,每位受試者皆需完成前測和後測,用來觀察受試前後的變化,藉此理解人工智慧如何與個體協作產生行為建議,以及輔助過後造成的效果影響。

    實驗結果顯示,在AI協作組提升生涯自我效能表現最為突出,平均提升 10.7 分、文字引導組平均提升4.9分、獨立完成組平均提升2.5分。AI協作組與獨立完成組間存在顯著差異(t(26)= 2.574, p = .041)。AI協作組中,對話型機器人擔任職涯輔導員的角色,協助受試者針對求職目標討論、探索過去的成功經驗以及拆解行動步驟。在過程中,受試者會收到對話型機器人的回饋,如同獲得同行夥伴陪伴其前行,協助其提升生涯自我效能。另外,雖然結果顯示人工智慧輔助行為建議對個體壓力具有緩解效果,然而,在實驗結果中發現組間之間並沒有顯著差異。未來研究應增加樣本數,在取樣上盡量減少個體間的差異,增加研究數據對於結果的支持。

    本研究結果顯示,基於SFBT架構下所設計的人工智慧對話型機器人,能依照個體的狀態與能力,與其討論出合適的行為建議,幫助個體思索過往成功經驗或是可利用的資源,協助個體找回面對難題的掌控感,也提升其面對和解決求職問題的自我效能。本研究指出,人工智慧的數位工具可作為諮商輔導的輔助資源,也能成為個體自我幫助的方法之一,提供未來設計對話型機器人應用於心理健康領域的研究參考。
    When people look for a job, they may feel stressed or emotionally overwhelmed; however, they can find support through helpful resources. People can access counseling services available in society and on campus. This process not only helps people process their thoughts and care for their emotions, but also enhances self-awareness and provides guidance on how to address the problems they are facing.

    As technology advances, artificial intelligence presents new opportunities for the development of counseling services, overcoming time and location limitations to provide people with immediate help and advice. This study aims to explore the application of artificial intelligence in solution-focused brief therapy (SFBT) and utilize it to support individuals in focusing on resolving problems in their career planning. To understand how artificial intelligence collaborates with people and provides advice. It also examines whether artificial intelligence enhances people's career self-efficacy and helps them reduce stress.

    This study adopts a single-factor experimental design. Randomly assigning 30 participants into three groups: "AI-guided group", "Text-guided group", "Self-Guided group". The experimental manipulation variable is the different methods of receiving behavioral advice. The dependent variables include career self-efficacy and stress scores. Each participant is required to complete both the pre-test and post-test to observe changes before and after the experiment, which helps to understand how artificial intelligence collaborates with people to provide behavioral advice and the effect of the advice provided.

    Results showed that the AI-guided group had the most improvement in career self-efficacy, with an average increase of 10.7 points, followed by the text-guided group with 4.9 points and the self-guided group with 2.5 points. A significant difference was found between the AI-guided group and the self-guided group, t(26) = 2.574, p < .05 . In the experiment, the chatbot played the role of a career mentor. It supported people in sharing their goals, reflecting on their successful experiences, and breaking down the goal into small action steps. During the experiment, participants received feedback from the chatbot. This support is beneficial in enhancing their career self-efficacy.

    Furthermore, the results showed that stress was reduced in the AI-guided group; however, there were no significant differences between the groups. In future studies, increasing the sample size and balancing the stress levels before the experiment may help reduce individual variability and enhance the reliability of the findings.

    In summary, this demonstrates that an AI chatbot designed under the SFBT framework can provide suitable behavioral advice tailored to individuals' needs and abilities. Because of this help, it enhances people's career self-efficacy and confidence in facing job search challenges. AI-collaborative digital tools can serve as a supportive resource in counseling. It can also be a self-help resource. The results and insights from this study can offer a valuable reference for future research on the use of chatbots in the mental health field.
    Reference: 王智弘 (2022)。科技在諮商上的運用:網路諮商、精準諮商與元宇宙諮商。輔導季刊, 1-12. https://www.airitilibrary.com/Article/Detail?DocID=19966822-202206-202207220012-202207220012-1-12

    王智弘、林清文、劉淑慧、楊淳斐、蕭宜綾 (2008)。台灣地區網路諮商服務發展之調查研究 [A Survey Study on Development of Cybercounseling in Taiwan]. 教育心理學報, 39(3), 395-412. https://doi.org/10.6251/bep.20070730.2

    王嘉琪 (2010)。大學生憂鬱情緒、自尊、污名化、自我揭露與求助態度之關係。﹝碩士論文。國立臺灣師範大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/usaksx

    台灣輔導與諮商學會 (2022)。台灣輔導與諮商學會輔導與諮商專業倫理守則.

    史靜芬 (2021)。全球網路諮商平台的運作模式之比較研究。﹝碩士論文。國立清華大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/6e62z6

    何佩錦 (2008)。焦點解決取向團體諮商對大學生生涯信念與生涯自我效能輔導效果之研究。﹝碩士論文。國立臺中教育大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/p4sm4v

    呂勝瑛 (1984)。諮商理論與技術. 五南圖書出版公司.

    沈孟筑 (2015)。焦點解決短期諮商師引發當事人賦能經驗之研究。﹝碩士論文。國立臺灣師範大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/9vbkn6

    孟謙 (2012)。心理諮商人員焦點解決短期諮商應用經驗之研究。﹝碩士論文。國立臺北教育大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/6694n2

    抱抱心身醫學 (2024)。2024 全台免費心理諮商資源、24 小時免費心理諮詢專線一次看. https://clinic.farhugs.com/posts/66c84402f757300001de695b

    林巧莉、謝麗紅 (2021)。AI對輔導與諮商教育的衝擊與反思. 台灣教育(727), 1-11. https://www.airitilibrary.com/Article/Detail?DocID=18166482-202102-202102190007-202102190007-1-11

    林俊德 (2006)。焦點解決短期諮商對當事人賦能形成之分析研究。﹝博士論文。國立彰化師範大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/6tx892

    洪偉瑜 (2010)。焦點解決取向生涯團體諮商介入策略對高中生幸福感與生涯自我效能之成效研究。﹝碩士論文。國立新竹教育大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/6358uf

    洪莉竹 (2007)。稻草變黃金:焦點解決諮商訓練手冊. 張老師文化.

    袁志晃 (2002)。生涯未定大學生生涯發展阻力因素之探討 [A Study of Career Undecided College Students' Self-Perceived Barriers in Career Development]. 彰化師大輔導學報(23), 109-130. https://doi.org/10.7040/gj.200206.0109

    袁聖琇 (2008)。當事人諮商期望、對諮商初期諮商師可信度與工作同盟之相關研究。﹝碩士論文。國立屏東教育大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/8wpt45

    高慧真 (2022)。運用焦點解決方案提升脆弱家庭青少年的自我效能。﹝碩士論文。東吳大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/a6392z

    張虹雯 (2011)。憂鬱情緒、求助態度、自我污名化、社會污名化與自我隱藏對求助行為及求助延宕影響之研究。﹝博士論文。國立臺灣師範大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/8e2fzu

    張晨郁 (2016)。社會大眾求助心理諮商模式之初探。﹝碩士論文。國立嘉義大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/t6apcu

    許鈞堯 (2020)。心理諮商值多少錢?台灣民眾可接受的諮商價格及其影響因素。﹝碩士論文。銘傳大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/9d4uq8

    許維素 (2009)。焦點解決短期治療高助益性重要事件及其諮商技術之初探研究 [High Helpful Significant Events and Related Techniques in Solution-Focused Brief Therapy: An Exploratory Study]. 教育心理學報, 41(S), 271-294. https://doi.org/10.6251/bep.20090302

    許維素 (2022)。焦點解決短期治療對於創傷復原的工作理念 [The Concepts of Solution-Focused Brief Therapy Working on Trauma Recovery]. 輔導季刊, 58(2), 43-54.

    郭淑梅、謝麗紅、劉嘉吉 (2023)。 當諮商遇到AI:談在人工智慧素養和諮商素養之架橋工作. 本土諮商心理學學刊, 14:3 2023.09[民112.09] 302-364.

    陳金定 (2001)。諮商技術. 心理出版社.

    陳德倫 (2021)。大專心理師耗竭前的 SOS:不被納入「正規軍」,如何支撐接住學生的安全網? 報導者. https://www.twreporter.org/a/mental-health-in-college-counseling-psychologist

    程小蘋、陳珍德 (2001)。大學生求助心態之分析研究 [The Study of the College Students' Psychological Help-Seeking]. 彰化師大輔導學報(22), 49-87. https://doi.org/10.7040/GJ.200106.0049

    黃俐瑀 (2023)。諮商心理師於COVID-19疫情期間對於通訊諮商的準備與需求之探討﹝碩士論文。中原大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/cbmrzd

    葉寶玲、郭文正、蔡佳容 (2024)。諮商系所學生使用聊天機器人經驗初探 [Counseling Students' First Impressions of Using Woebot: A Mental Health Chatbot]. 教育心理學報, 56(1), 45-72. https://doi.org/10.6251/bep.202409_56(1).0003

    衛生福利部心理健康司. (2022). 各縣市社區心理諮商服務一覽表. https://dep.mohw.gov.tw/DOMHAOH/cp-4558-69568-107.html

    賴瑞芳 (2005)。焦點解決短期諮商(SFBT)的問話模式-以人際困擾個案為例. 諮商與輔導(239), 8-11. https://doi.org/10.29837/cg.200511.0002

    謝筱柔 (2019)。諮商輔導效能因素、效能機制及諮商效能之後設研究。﹝碩士論文。國立彰化師範大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/3m9r49

    簡君倫 (2010)。大學生性格類型、生涯自我效能與生涯決定之相關研究。﹝碩士論文。國立新竹教育大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/gpgp2h

    瓊格, Jong, P. D., 柏格, Berg, I. K., & 許維素. (2013). 建構解決之道的會談 : 焦點解決短期治療 / Peter De Jong, Insoo Kim Berg著 ; 許維素譯 (第二版 ed.). 新加坡商聖智學習出版.

    Abd-Alrazaq, A. A., Alajlani, M., Alalwan, A. A., Bewick, B. M., Gardner, P., & Househ, M. (2019). An overview of the features of chatbots in mental health: A scoping review. Int J Med Inform, 132, 103978. https://doi.org/10.1016/j.ijmedinf.2019.103978

    Adamopoulou, E., & Moussiades, L. (2020). Chatbots: History, technology, and applications. Machine Learning with Applications, 2, 100006. https://doi.org/https://doi.org/10.1016/j.mlwa.2020.100006

    Antonio, S., Joseph, D., Parsons, J., & Atherton, H. (2024). Experiences of remote consultation in UK primary care for patients with mental health conditions: A systematic review. DIGITAL HEALTH, 10, 20552076241233969. https://doi.org/10.1177/20552076241233969

    Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191-215. https://doi.org/10.1037/0033-295X.84.2.191

    Bannink, F. P. (2007). Solution-Focused Brief Therapy. Journal of Contemporary Psychotherapy, 37(2), 87-94. https://doi.org/10.1007/s10879-006-9040-y

    Barker, G. G., & Barker, E. E. (2022). Online therapy: lessons learned from the COVID-19 health crisis. British Journal of Guidance & Counselling, 50(1), 66-81. https://doi.org/10.1080/03069885.2021.1889462

    Beri, G., & Srivastava, V. (2024). Advanced Techniques in Prompt Engineering for Large Language Models: A Comprehensive Study. https://doi.org/10.1109/ICTBIG64922.2024.10911672

    Beurer-Kellner, L., Fischer, M., & Vechev, M. (2023). Prompting Is Programming: A Query Language for Large Language Models. Proc. ACM Program. Lang., 7(PLDI), Article 186. https://doi.org/10.1145/3591300

    Bezanson, B. (2004). The Application of Solution-Focused Work in Employment Counseling. Journal of Employment Counseling, 41. https://doi.org/10.1002/j.2161-1920.2004.tb00891.x

    Bharti, U., Bajaj, D., Batra, H., Lalit, S., Lalit, S., & Gangwani, A. (2020). Medbot: Conversational Artificial Intelligence Powered Chatbot for Delivering Tele-Health after COVID-19 2020 5th International Conference on Communication and Electronics Systems (ICCES). https://doi.org/10.1109/ICCES48766.2020.9137944

    Brocki, L., Dyer, G. C., Gładka, A., & Chung, N. C. (2023). Deep Learning Mental Health Dialogue System. 2023 IEEE International Conference on Big Data and Smart Computing (BigComp). https://doi.org/10.1109/BigComp57234.2023.00097

    Centola, F. (2025). Mental Health Europe launches a study on Artificial Intelligence in mental healthcare. https://www.mentalhealtheurope.org/mental-health-europe-launches-a-study-on-artificial-intelligence-in-mental-healthcare/

    Chen, L. (2023). A study on the positive effects of artificial intelligence intervention in the artistic healing of meditation. International Conference on Innovation, Communication and Engineering (ICICE 2023). https://doi.org/10.1049/icp.2024.0310

    Cohen, S., Kamarck, T., & Mermelstein, R. (1983). A Global Measure of Perceived Stress. Journal of Health and Social Behavior, 24(4), 385-396. https://doi.org/10.2307/2136404

    Corey, G. (2016). Theory and Practice of Counseling and Psychotherapy, Enhanced. Cengage Learning.

    Dale, R. (2016). The return of the chatbots. Natural Language Engineering, 22(5), 811-817. https://doi.org/10.1017/S1351324916000243

    Dida, H. A., & Rabbi, F. (2023). ChatGPT and Big Data: Enhancing Text-to-Speech Conversion. Mesopotamian Journal of Big Data, 2023, 33-37. https://doi.org/10.58496/MJBD/2023/005

    Dong, H., Zhang, D., & Wang, T. (2024). The effects of Solution-Focused Brief Therapy on self-care and mental health among older adults at risk of coronary heart disease: A randomized controlled trial. Geriatr Nurs, 57, 11-16. https://doi.org/10.1016/j.gerinurse.2024.02.029

    Duff, T. S. (2014). Empowering adolescents through solution-focused counselling : The Experiences of New Zealand Adolescents.

    Egan, G. (1990). The skilled helper : a systematic approach to effective helping / Gerard Egan (4th ed.). Brooks/Cole Pub.

    Eke, D. O. (2023). ChatGPT and the rise of generative AI: Threat to academic integrity? Journal of Responsible Technology, 13, 100060. https://doi.org/10.1016/j.jrt.2023.100060

    Fitzpatrick, K. K., Darcy, A., & Vierhile, M. (2017). Delivering Cognitive Behavior Therapy to Young Adults With Symptoms of Depression and Anxiety Using a Fully Automated Conversational Agent (Woebot): A Randomized Controlled Trial. JMIR Ment Health, 4(2), e19. https://doi.org/10.2196/mental.7785

    Ghazizadeh, E., & Zhu, P. (2021). A Systematic Literature Review of Natural Language Processing: Current State, Challenges and Risks Proceedings of the Future Technologies Conference (FTC) 2020, Volume 1, Cham. https://doi.org/10.1007/978-3-030-63128-4_49

    Guindon, M. H. (2019). When? Answers about processes, phases, and procedures. In A Counseling Primer: An Orientation to the Profession, 112-127. https://doi.org/10.4324/9780429436031-8

    Guntzviller, L., & Farrell, E. (2013). Modeling Interactional Influence in Advice Exchanges: Advice Giver Goals and Recipient Evaluations. Communication Monographs, 80, 83-100. https://doi.org/10.1080/03637751.2012.739707

    Gupta, P., Ding, B., Guan, C., & Ding, D. (2024). Generative AI: A systematic review using topic modelling techniques. Data and Information Management, 8(2), 100066. https://doi.org/https://doi.org/10.1016/j.dim.2024.100066

    Hackett, G., & Betz, N. E. (1981). A self-efficacy approach to the career development of women. Journal of Vocational Behavior, 18(3), 326-339. https://doi.org/10.1016/0001-8791(81)90019-1

    Haenlein, M., & Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. California Management Review, 61, 000812561986492. https://doi.org/10.1177/0008125619864925

    Hayashi, Y., & Kiuchi, K. (2024). Towards Developing an Active Listening Counseling Robot for Multiple Generations: A Text Mining Study on Emotional Expression of the Elderly and the Young Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction, Boulder, CO, USA. https://doi.org/10.1145/3610978.3640733

    Jovanović, M., & Campbell, M. (2022). Generative Artificial Intelligence: Trends and Prospects. Computer, 55(10), 107-112. https://doi.org/10.1109/MC.2022.3192720

    Kale, A., Yaduka, T., Shaikh, T., Kaur, G., Pinjarkar, L., Agrawal, P., Patil, R. R., Chaurasia, S., & Khanuja, H. K. (2024). Unveiling the Power of AI Prompt Engineering: A Comprehensive Exploration 2024 10th International Conference on Electrical Energy Systems (ICEES). https://doi.org/10.1109/ICEES61253.2024.10776884

    Kannampallil, T., Ajilore, O. A., Lv, N., Smyth, J. M., Wittels, N. E., Ronneberg, C. R., Kumar, V., Xiao, L., Dosala, S., Barve, A., Zhang, A., Tan, K. C., Cao, K. P., Patel, C. R., Gerber, B. S., Johnson, J. A., Kringle, E. A., & Ma, J. (2023). Effects of a virtual voice-based coach delivering problem-solving treatment on emotional distress and brain function: a pilot RCT in depression and anxiety. Translational Psychiatry, 13(1), 166. https://doi.org/10.1038/s41398-023-02462-x

    Kaplan, D. M., Tarvydas, V. M., & Gladding, S. T. (2014). 20/20: A vision for the future of counseling: The new consensus definition of counseling. Journal of Counseling & Development, 92(3), 366-372. https://doi.org/10.1002/j.1556-6676.2014.00164.x

    Kaswan, K. S., Dhatterwal, J. S., Malik, K., & Baliyan, A. (2023). Generative AI: A Review on Models and Applications 2023 International Conference on Communication, Security and Artificial Intelligence (ICCSAI). https://doi.org/10.1109/ICCSAI59793.2023.10421601

    Lee, Y.-C., Yamashita, N., & Huang, Y. (2020). Designing a Chatbot as a Mediator for Promoting Deep Self-Disclosure to a Real Mental Health Professional. Proceedings of the ACM on Human-Computer Interaction, 4, 1-27. https://doi.org/10.1145/3392836

    Lent, R., & Hackett, G. (1987). Career self-efficacy: Empirical status and future directions. Journal of Vocational Behavior, 30, 347-382. https://doi.org/10.1016/0001-8791(87)90010-8

    Lin, Y., Jessurun, J., Vries, B. d., & Timmermans, H. (2011). Motivate: context aware mobile application for activity recommendation Proceedings of the Second international conference on Ambient Intelligence, Amsterdam, The Netherlands. https://doi.org/10.1007/978-3-642-25167-2_27

    Liu, I., Chen, W., Ge, Q., Song, D., & Ni, S. (2024). Enhancing Psychological Resilience with Chatbot-Based Cognitive Behavior Therapy: A Randomized Control Pilot Study Proceedings of the Tenth International Symposium of Chinese CHI, Guangzhou, China and Online, China. https://doi.org/10.1145/3565698.3565787

    MacGeorge, E., Feng, B., & Thompson, E. (2008). “Good” and “Bad” Advice: How to Advise More Effectively. In (pp. 145-164). https://doi.org/10.4135/9781412990301.n7

    Malone, T. W. (2018). How Human-Computer 'Superminds' Are Redefining the Future of Work. MIT Sloan Management Review, 59(4), 34-41. http://dx.doi.org/10.7551/mitpress/12450.003.0010

    McLeod, J. (1993). An introduction to counselling.

    Nilsson, N. J. (2009). The Quest for Artificial Intelligence. Cambridge University Press.

    O. I. I, R., & C. G. Q, M. (2023). Generative AI: The key for everyday problems. A comparison proposal for new users. https://doi.org/10.1109/C358072.2023.10436249

    Olawade, D. B., Wada, O. Z., Odetayo, A., David-Olawade, A. C., Asaolu, F., & Eberhardt, J. (2024). Enhancing mental health with Artificial Intelligence: Current trends and future prospects. Journal of Medicine, Surgery, and Public Health, 3. https://doi.org/10.1016/j.glmedi.2024.100099

    Patel, V. (2023). The right to mental health. The Lancet, 402(10411), 1412-1413. https://doi.org/10.1016/S0140-6736(23)02241-9

    Pawar, V., Gawande, M., Kollu, A., & Bile, A. S. (2024). Exploring the Potential of Prompt Engineering: A Comprehensive Analysis of Interacting with Large Language Models 2024 8th International Conference on Computing, Communication, Control and Automation (ICCUBEA). https://doi.org/10.1109/ICCUBEA61740.2024.10775016

    Provoost, S., Lau, H. M., Ruwaard, J., & Riper, H. (2017). Embodied Conversational Agents in Clinical Psychology: A Scoping Review. J Med Internet Res, 19(5), e151. https://doi.org/10.2196/jmir.6553

    Rakich, S., & Martinez, D. (2021). Solution-Focused Brief Counseling in Schools: An Alternative Approach to Problem-Solving and Counseling. In (pp. 109-126). https://doi.org/10.4018/978-1-7998-3432-8.ch007

    Rickwood, D., Deane, F. P., Wilson, C. J., & Ciarrochi, J. (2005). Young people’s help-seeking for mental health problems. Australian e-Journal for the Advancement of Mental Health, 4(3), 218-251. https://doi.org/10.5172/jamh.4.3.218

    Shafik, W. (2024). Introduction to ChatGPT. In A. J. Obaid, B. Bhushan, M. S, & S. S. Rajest (Eds.), Advanced Applications of Generative AI and Natural Language Processing Models (pp. 1-25). IGI Global. https://doi.org/10.4018/979-8-3693-0502-7.ch001

    Sommers-Flanagan, J., Polanchek, S., Zeleke, W., Hood, M., & Shaw, S. (2014). Effectiveness of Solution-Focused Consultations on Parent Stress and Competence. The Family Journal, 23. https://doi.org/10.1177/1066480714555696

    Takagi, G. (2024). The effect of mechanical feedback on outcome in self-care support tool based on solution-focused brief therapy. Psychotherapy Research, 34(2), 205-215. https://doi.org/10.1080/10503307.2023.2184732

    TAKANO, Y., TSURUBE, T., UENO, H., & KOMATSUGAWA, H. (2023). A Proposal and Evaluation of Learning Advising using a Generative AI. 2023: ICCE 2023: The 31st International Conference on Computers in Education. https://doi.org/https://doi.org/10.58459/icce.2023.4770

    Taylor, K. M., & Betz, N. E. (1983). Applications of self-efficacy theory to the understanding and treatment of career indecision. Journal of Vocational Behavior, 22(1), 63-81. https://doi.org/10.1016/0001-8791(83)90006-4

    Teevan, J., Iqbal, S. T., Cai, C. J., Bigham, J. P., Bernstein, M. S., & Gerber, E. M. (2016). Productivity Decomposed: Getting Big Things Done with Little Microtasks Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, San Jose, California, USA. https://doi.org/10.1145/2851581.2856480

    Tyagi, N., & Bhushan, B. (2023). Demystifying the Role of Natural Language Processing (NLP) in Smart City Applications: Background, Motivation, Recent Advances, and Future Research Directions. Wireless Personal Communications, 130(2), 857-908. https://doi.org/10.1007/s11277-023-10312-8

    Vaidyam, A. N., Wisniewski, H., Halamka, J. D., Kashavan, M. S., & Torous, J. B. (2019). Chatbots and Conversational Agents in Mental Health: A Review of the Psychiatric Landscape. The Canadian Journal of Psychiatry, 64(7), 456-464. https://doi.org/10.1177/0706743719828977

    van der Schyff, E. L., Ridout, B., Amon, K. L., Forsyth, R., & Campbell, A. J. (2023). Providing Self-Led Mental Health Support Through an Artificial Intelligence-Powered Chat Bot (Leora) to Meet the Demand of Mental Health Care. J Med Internet Res, 25, e46448. https://doi.org/10.2196/46448

    Vikash, R., Soy, A., Davis, S., & Chaudhury, S. (2024). Approaches to counseling. In A Guide to Clinical Psychology: Therapies, 1-16.

    Weizenbaum, J. (1983). ELIZA — a computer program for the study of natural language communication between man and machine. Commun. ACM, 26(1), 23–28. https://doi.org/10.1145/357980.357991

    Yang, K., Ji, S., Zhang, T., Xie, Q., & Ananiadou, S. (2023). On the Evaluations of ChatGPT and Emotion-enhanced Prompting for Mental Health Analysis. https://doi.org/10.48550/arXiv.2304.03347

    Yuan, Z., & Lyu, T. (2024). Association Between AI Chatbot Self-efficacy and EFL Student Class-related Anxiety: A Control-Value Theory Perspective Proceedings of the 2024 9th International Conference on Distance Education and Learning, https://doi.org/10.1145/3675812.3675822

    Zhang, L., Pan, Y., Wu, X., & Skibniewski, M. J. (2021). Introduction to Artificial Intelligence. In L. Zhang, Y. Pan, X. Wu, & M. J. Skibniewski (Eds.), Artificial Intelligence in Construction Engineering and Management (pp. 1-15). Springer Singapore. https://doi.org/10.1007/978-981-16-2842-9_1

    Zhao, F., Xie, K., Wang, S., Zhao, L., Wang, G., Wu, X., & Cui, Y. (2024, 27-29 July 2024). Application Prospects of Large-Scale Model Technology in the Power Industry 2024 20th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD).

    Zhu, G., Sudarshan, V., Kow, J., & Ong, Y. (2024). Human-Generative AI Collaborative Problem Solving Who Leads and How Students Perceive the Interactions. https://doi.org/10.48550/arXiv.2405.13048
    Description: 碩士
    國立政治大學
    數位內容碩士學位學程
    112462003
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112462003
    Data Type: thesis
    Appears in Collections:[數位內容碩士學位學程] 學位論文

    Files in This Item:

    File Description SizeFormat
    200301.pdf4875KbAdobe PDF4View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback