English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118658/149719 (79%)
Visitors : 80082694      Online Users : 929
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/159216


    Title: 將客戶價值與財務績效連結: 客戶價值指數與商業應用
    Connecting Customer Value to Financial Performance: The Customer Value Index and Business Applications
    Authors: 李東桓
    Lee, Dong-Hwan
    Contributors: 蔡政憲
    Jason Tsai
    李東桓
    Lee, Dong-Hwan
    Keywords: 客戶價值指數
    客戶相關財務指標
    財務績效
    客戶策略
    動態互動
    分析引導決策
    CVI-市場同步
    CDSTM
    客戶留存
    策略協同
    Customer Value Index
    Customer-Related Financial Metrics
    Financial Performance
    Customer Strategy
    Dynamic Interaction
    Analytics-Guided Decision Making
    CVI-Market Sync.
    CDSTM
    Customer Retention
    Strategic Alignment
    Date: 2025
    Issue Date: 2025-09-01 15:52:59 (UTC+8)
    Abstract: 在2025年競爭激烈的全球商業環境中,以客戶為中心的策略已成為實現財務成功和維持競爭優勢的基石,因為企業必須應對快速變化的市場動態和日益提高的消費者期望。從目標數位行銷到個性化忠誠計畫等客戶相關活動的激增,受到社交網絡系統(SNS)數據激增的推動,創造了一個複雜的生態系統,使企業難以管理數據過載、協調跨部門努力並在不斷增加的行銷支出中進行創新。
    研究必要性與問題陳述
    缺乏一個全面、標準化的指標來量化客戶價值創造與財務成果之間的複雜關係,構成了策略決策的關鍵障礙,使企業無法充分發揮以客戶為中心的策略。傳統指標,如客戶終身價值(CLV)或淨推薦值(NPS),往往僅聚焦於特定面向,無法全面捕捉客戶在獲取、參與、保留和盈利能力方面的整體影響。這一差距限制了企業評估以客戶為中心舉措有效性的能力,阻礙了最佳資源分配和長期財務目標的對齊,凸顯了需要一個整合框架來推動可持續成長的需求。
    缺乏量化客戶價值的標準化指標,結合本研究獨創提出的客戶相關財務指標(CRFMs)框架,進一步強調了如客戶價值指數(CVI)這樣整合方法的需求。
    研究概述與方向
    在第一部分,CVI 通過八個關鍵因子—客戶收入效率、行銷影響、參與潛力、忠誠承諾、購買動能、服務滿意度、創新參與和品牌資產—在基於回歸的模型中構建,該模型通過20個客戶相關財務指標(包括收入、客戶獲取成本和流失率)將客戶價值與財務成果聯繫起來。主成分分析(PCA)用於推導這些因子,解釋了80%的數據變異,採用標準化的企業財務記錄和市場數據集,確保客戶動態的穩健表達。該模型的效度通過因子分析、結構方程模型和敏感性檢查等先進統計方法得到驗證,與基礎客戶權益理論保持一致。
    背景
    在第二部分,研究開發了客戶動態與策略轉型模型(CDSTM),並通過深入的亞馬遜案例研究進行驗證,展示了其在優化CRFM驅動的互動策略方面的實際效用。第二部分引入了CVI-Market Sync框架,整合CVI與CDSTM,以在短期(T1:3-6個月)、中期(T2:6-12個月)和長期(T3:1-3年)階段中,將客戶價值策略與市場動態同步。CVI-Market Sync應用於多個行業,包括電子商務(例如亞馬遜、阿里巴巴)、科技(例如微軟、蘋果)、媒體(例如Netflix、迪士尼)和零售(例如沃爾瑪、Costco),以及台灣中小企業,其中CRFM追蹤率揭示了策略差距。此外,研究開發了一個可擴展性驗證工具,以增強策略決策、改善客戶保留並支持全球企業的分析導向資源優化。
    關鍵詞
    客戶價值指數、客戶相關財務指標、財務績效、客戶策略、動態互動、分析導向決策、CVI-Market Sync、CDSTM、客戶保留、策略對齊
    Background
    In the fiercely competitive global business landscape of 2025, customer-centric strategies have become the cornerstone for achieving financial success and sustaining a competitive edge, as firms grapple with rapidly evolving market dynamics and heightened consumer expectations. The surge in customer-related activities ranging from targeted digital marketing to personalized loyalty programs has been amplified by the proliferation of data from Social Networking Systems (SNS), creating a complex ecosystem where firms struggle to manage data overload, align cross-departmental efforts, and innovate amidst escalating marketing expenditures.
     
    Research Necessity and Problem Statement

    The absence of a comprehensive, standardized metric to quantify the intricate relationship between customer value creation and financial outcomes poses a critical barrier to strategic decision-making, leaving firms unable to harness customer-focused strategies fully. Traditional metrics like Customer Lifetime Value (CLV) or Net Promoter Score (NPS) often focus narrowly on specific dimensions, failing to capture the holistic impact of customer interactions across acquisition, engagement, retention, and profitability. This gap limits firms’ ability to evaluate the effectiveness of customer-centric initiatives, impeding optimal resource allocation and alignment with long-term financial objectives, and highlighting the need for an integrated framework to drive sustainable growth.
    The absence of a standardized metric to quantify customer value, coupled with the novel introduction of Customer-Related Financial Metrics (CRFMs)—a framework uniquely proposed in this study—underscores the need for an integrated approach like the Customer Value Index (CVI).
     
    Research Overview and Direction
     
    In Part 1, the CVI is constructed using 8 Key-Factors—Customer Revenue Efficiency, Marketing Impact, Engagement Potential, Loyalty Commitment, Purchase Momentum, Service Satisfaction, Innovation Engagement, and Brand Equity—within a regression-based model that links customer value to financial outcomes through 20 Customer-Related Financial Metrics, including Revenue, Customer Acquisition Cost, and Churn Rate. Principal Component Analysis is employed to derive these factors, explaining 80% of the data variance, using normalized corporate financial records and market datasets, ensuring robust representation of customer dynamics. The model’s validity is confirmed through advanced statistical methods like factor analysis, structural equation modeling, and sensitivity checks, aligning with foundational customer equity theories.
     
    In Part 2, the study develops the Customer Dynamics and Strategic Transition Model, validated through an in-depth Amazon case study, demonstrating its practical utility in optimizing CRFM-activated interactions strategies. Part 2 introduces the CVI-Market Sync. framework, integrating CVI and CDSTM to synchronize customer value strategies with market dynamics across short-term (T1: 3-6 months), medium-term (T2: 6-12 months), and long-term (T3: 1-3 years) phases. CVI-Market Sync. is applied across diverse industries, including e-commerce (e.g., Amazon, Alibaba, technology (e.g., Microsoft, Apple), media (e.g., Netflix, Disney), and retail (e.g., Walmart, Costco), as well as SMEs in Taiwan, where CRFM tracking rates reveal strategic gaps. Additionally, the study develops a scalability validation tool to enhance strategic decision-making, improve customer retention, and support analytics-guided resource optimization across global corporations
     
    Keywords
    Customer Value Index, Customer-Related Financial Metrics, Financial Performance, Customer Strategy, Dynamic Interaction, Analytics-Guided Decision Making, CVI-Market Sync., CDSTM, Customer Retention, Strategic Alignment
    Reference: 1. Almquist, E., Senior, J., & Bloch, N. (2016). The elements of value: Measuring—and delivering—what consumers really want. Harvard Business Review, 94(9), 46–53.

    2. Damodaran, A. (2012). Investment valuation: Tools and techniques for determining the value of any asset (3rd ed.). Wiley.

    3. Deloitte. (2024). 2024 customer experience trends report. Deloitte Insights. Retrieved March 20, 2025, from https://www2.deloitte.com/us/en/insights/topics/customer-experience.html

    4. FactSet. (2023). Global financial and market analytics. Retrieved March 20, 2025, from https://www.factset.com

    5. Fader, P. S., Hardie, B. G. S., & Lee, K. L. (2005). RFM and CLV: Using iso-value curves for customer base analysis. Journal of Marketing Research, 42(4), 415–430. https://doi.org/10.1509/jmkr.2005.42.4.415

    6. Global Reporting Initiative. (2023). GRI 101: Sustainability reporting standards. Retrieved March 20, 2025, from https://www.globalreporting.org/standards

    7. Gupta, S., Hanssens, D., Hardie, B., Kahn, W., Kumar, V., Lin, N., Ravishanker, N., & Sriram, S. (2006). Modeling customer lifetime value. Journal of Service Research, 9(2), 139–155. https://doi.org/10.1177/1094670506293810

    8. Gupta, S., Lehmann, D. R., & Stuart, J. A. (2004). Valuing customers. Journal of Marketing Research, 41(1), 7–18. https://doi.org/10.1509/jmkr.41.1.7.25084

    9. Hair, J. F., Jr., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Pearson.
    10. Han, J., Kamber, M., & Pei, J. (2011). Data mining: Concepts and techniques (3rd ed.). Morgan Kaufmann.

    11. International Integrated Reporting Council. (2013). The international integrated reporting framework. Retrieved March 20, 2025, from https://www.integratedreporting.org/wp-content/uploads/2013/12/13-12-08-THE-INTERNATIONAL-IR-FRAMEWORK-2-1.pdf

    12. Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). Springer.

    13. Kaplan, R. S., & Norton, D. P. (1992). The balanced scorecard: Measures that drive performance. Harvard Business Review, 70(1), 71–79. https://doi.org/10.1225/92105

    14. Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: Preferences and value tradeoffs. Cambridge University Press.

    15. Kumar, V., & Reinartz, W. (2016). Creating enduring customer value. Journal of Marketing, 80(6), 36–68. https://doi.org/10.1509/jm.15.0414

    16. McKinsey & Company. (2023). The state of organizations 2023: Ten shifts transforming organizations. Retrieved March 20, 2025, from https://www.mckinsey.com/capabilities/people-and-organizational-performance/our-insights/the-state-of-organizations-2023

    17. Mergent Online. (2023). Mergent corporate financial database. Retrieved March 20, 2025, from https://www.mergentonline.com

    18. Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1988). SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality. Journal of Retailing, 64(1), 12–40.

    19. Porter, M. E. (2008). Competitive advantage: Creating and sustaining superior performance. Free Press.

    20. Reichheld, F. F. (2003). The one number you need to grow. Harvard Business Review, 81(12), 46–54.

    21. Reichheld, F. F., & Sasser, W. E., Jr. (1990). Zero defections: Quality comes to services. Harvard Business Review, 68(5), 105–111.

    22. Rust, R. T., Lemon, K. N., & Zeithaml, V. A. (2004). Return on marketing: Using customer equity to focus marketing strategy. Journal of Marketing, 68(1), 109–127. https://doi.org/10.1509/jmkg.68.1.109.24030

    23. Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98. https://doi.org/10.1504/IJSSCI.2008.017590

    24. Similarweb. (2023). Similarweb digital intelligence platform. Retrieved March 20, 2025, from https://www.similarweb.com

    25. Statista. (2023). Statista global industry and market database. Retrieved March 20, 2025, from https://www.statista.com

    26. Sterman, J. D. (2000). Business dynamics: Systems thinking and modeling for a complex world. McGraw-Hill Education.

    27. SurveyMonkey. (2023). SurveyMonkey market research solutions. Retrieved March 20, 2025, from https://www.surveymonkey.com

    28. Wooldridge, J. M. (2013). Introductory econometrics: A modern approach (5th ed.). South-Western Cengage Learning.

    29. Zeithaml, V. A., Berry, L. L., & Parasuraman, A. (1993). The nature and determinants of customer expectations of service. Journal of the Academy of Marketing Science, 21(1), 1–12. https://doi.org/10.1007/BF02894440

    30. Zeithaml, V. A., Bitner, M. J., & Gremler, D. D. (2009). Services marketing: Integrating customer focus across the firm (5th ed.). McGraw-Hill Education.
    Description: 碩士
    國立政治大學
    國際經營管理英語碩士學位學程(IMBA)
    112933039
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112933039
    Data Type: thesis
    Appears in Collections:[國際經營管理英語碩士學程IMBA] 學位論文

    Files in This Item:

    File Description SizeFormat
    303901.pdf12288KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback