資料載入中.....
|
請使用永久網址來引用或連結此文件:
https://nccur.lib.nccu.edu.tw/handle/140.119/159259
|
| 題名: | 大型語言模型權重之著作權議題 Copyright-Related Legal Considerations for Large Language Model Weights |
| 作者: | 張瑀舫 Chang, Yu-Fang |
| 貢獻者: | 宋皇志 王文杰 Sung, Huang-Chih Wang, Wen-Chieh 張瑀舫 Chang, Yu-Fang |
| 關鍵詞: | 生成式人工智慧 大型語言模型 權重 著作權適格性 衍生著作 Generative Artificial Intelligence Large Language Models Model Weights Copyright Eligibility Derivative Works |
| 日期: | 2025 |
| 上傳時間: | 2025-09-01 16:08:37 (UTC+8) |
| 摘要: | 2022年起,大型語言模型(LLM)的快速發展徹底改變了內容生成的典範,卻也對既有的著作權體系構成前所未有的挑戰。從訓練資料的合法取得到生成內容的權利歸屬,現行法律框架顯得捉襟見肘,引發了學術界與實務界的廣泛討論。
多數討論僅聚焦於大型語言模型訓練端與輸出端之著作權議題,對於大型語言模型內部重要成分——權重——則甚少著墨。然而,大型語言模型之權重係決定模型表現之關鍵因素,近兩年來隨著開源之推動,權重之可得性提高,市場競爭格局因而產生變化,權重是否得受著作權保護將成為法律與科技雙重領域的關鍵議題。
本研究旨在探討大型語言模型權重之著作權適格性議題。研究核心問題為:權重是否符合著作權之各項要件?權重屬於何種著作類型?權重是否為訓練資料之衍生著作?微調後權重是否為微調前權重之衍生著作?
透過跨學科文獻歸納及比較法分析,本研究發現,權重應屬固著於一定有形媒介之原創性表達,應受著作權保護,屬於美國法下之文學著作;我國法下則未必構成語文著作,而屬法規未例示之類型。權重與訓練資料間不具實質相似性,並非對訓練資料之改作,然微調後權重則構成微調前權重之衍生著作。
隨著越來越多科技公司加入開源權重之陣營,第三人可輕易取得該些權重並自行微調以適配特定任務,權重獨立受著作權保護之必要性愈發彰明較著。期能藉由本研究之探討,豐富大型語言模型權重於著作權領域之討論,為相關領域帶來新的思考方向與討論契機。 Since 2022, the rapid advancement of large language models (LLMs) has fundamentally altered the paradigm of content Generation, while simultaneously presenting unprecedented challenges to existing copyright regimes. Issues such as the lawful acquisition of training data and the attribution of rights in generated outputs have exposed the limitations of current legal frameworks, thereby sparking significant academic and practical discourse.
To date, the majority of discussions have concentrated on copyright issues pertaining to the training and output stages of LLMs. In contrast, relatively little attention has been paid to a core internal element of such models—their weights. Yet model weights are a determinative factor in the performance of LLMs. In recent years, the growing trend toward open-sourcing has rendered weights increasingly accessible, thereby reshaping the competitive landscape. Against this backdrop, the question of whether model weights are eligible for copyright protection has emerged as a critical issue at the intersection of intellectual property law and emerging technologies.
This article seeks to examine the copyright eligibility of LLM weights. The central questions addressed include: whether model weights satisfy the statutory requirements for copyright protection; the appropriate classification of weights within existing categories of copyrightable subject matter; whether model weights constitute derivative works of the underlying training data; and whether fine-tuned weights may be regarded as derivative works of the pre-fine-tuned weights.
Employing an interdisciplinary methodology that combines doctrinal legal analysis with comparative law perspectives, this study finds that model weights constitute original expressions fixed in a tangible medium of expression, and as such, should be eligible for copyright protection. Under U.S. copyright law, they may be classified as literary works; under Taiwanese law, however, they may not fall within the statutory definition of “linguistic works,” and instead may constitute an unenumerated category of protected works. Furthermore, there is no substantial similarity between the model weights and the training data; accordingly, weights should not be deemed derivative works of such data. By contrast, fine-tuned weights may satisfy the criteria for derivative works in relation to the original model weights.
As more technology companies adopt open-source licensing practices with respect to model weights, enabling third parties to easily obtain and adapt these weights for task-specific purposes, the need for independent copyright protection of model weights becomes increasingly apparent. It is hoped that this study will contribute to the growing body of literature concerning the intersection of artificial intelligence and copyright law, and provide a foundation for future legal inquiry and policy development in this area. |
| 參考文獻: | 一、中文文獻 (一)專書論著 1、張奇等著,大規模語言模型:從理論到實踐,第二版,2025,https://intro-llm.github.io/。 2、章忠信,著作權法逐條釋義,第六版,台北市:五南圖書出版公司,2023。 3、趙鑫等著。大語言模型。北京:高等教育出版社,2024。 4、謝銘洋,智慧財產權法,增修十一版,台北市:元照出版公司,2021。 (二)期刊論文 1、李江昀、趙義凱、薛卓爾、蔡錚、李擎,「深度神經網絡模型壓縮綜述」,工程科學學報第41卷第10期,頁1229-1239,2019年10月。https://doi.org/10.13374/j.issn2095-9389.2019.03.27.002。 2、李素華,「著作權法所保護『著作』之概念釐清」,當代法律15期,頁78-83,2023年3月。 3、徐繼敏,「生成式人工智能治理原則與法律策略」,理論與改革第253期,頁73-74,2023年9月。 4、蔡明誠,「論人工智慧時代著作權法上結合著作與其他著作類型之概念及利用」,月旦法學雜誌344期,頁6-21,2024年1月。 5、鄭緯民,「分布式技術在大模型訓練和推理中的應用」,大數據第10卷第5期,頁1-10,2024年9月。https://doi.org/10.11959/j.issn.2096-0271.2024056。 (三)司法判決 1、北京互聯網法院(2023)京0491民初11279號民事判决書。 2、智慧財產法院105年度刑智上訴字第7號刑事判決。 3、智慧財產法院106年度民營訴字第2號民事判決。 4、智慧財產及商業法院109年度民營上字第4號民事判決。 5、智慧財產及商業法院110年度民著上字第4號民事判決。 6、智慧財產及商業法院110年度刑智上重訴字第5號刑事判決。 7、最高法院97年度台上字第3914號刑事判決。 8、最高法院106年度台上字第290號民事判決。 9、最高法院113年度台上字第1449號民事判決。 10、臺中高等行政法院109年度訴字第279號判決。 11、臺灣高雄地方法院107年度智訴字第1號刑事判決。 (四)專利說明書 1、「一種人工智能模型訓練数据集的構建方法」發明專利申請書,申請日:2024.03.28,申請公布號:CN 118246542 A。 (五)政府資料 1、立法院法律系統,「著作權法立法沿革」,1985年7月10日,https://lis.ly.gov.tw/lglawc/lawsingle?00A7590C414C000000000000000000A000000002FFFFFD^01176074062800^00000000000,最後瀏覽日:2025年7月1日。 2、立法院法律系統,「著作權法立法沿革」,1992年6月10日,https://lis.ly.gov.tw/lglawc/lawsingle?002C7D1DA171000000000000000000A000000002FFFFFA00^01176081052200^00000000000,最後瀏覽日:2025年7月1日。 3、行政院,「立法院議案關係文書 院總第五五三號 政府提案第三九六三號」,1990年12月20日,https://lis.ly.gov.tw/lgcgi/lgmeetimage?cfcec7c9cdc8cfcfc5cbc9d2cecace,最後瀏覽日:2025年7月1日。 4、經濟部著作權組,「(一)著作權基本概念篇-1~10」,經濟部智慧財產,2008年3月31日,https://www.tipo.gov.tw/tw/cp-180-219594-7f8ac-1.html,最後瀏覽日:2025年7月1日。 5、經濟部著作權組,「著作權法第五條第一項各款著作內容例示」,經濟部智慧財產局著作權主題網,2008年4月3日,https://www.tipo.gov.tw/copyright-tw/cp-441-856398-f4867-301.html,最後瀏覽日:2025年7月1日。 6、經濟部著作權組,「智著字第09500048510號函釋」,經濟部智慧財產局著作權主題網,2006年5月29日,https://www.tipo.gov.tw/copyright-tw/cp-407-852018-ebc8a-301.html,最後瀏覽日:2025年7月1日。 7、經濟部著作權組,「電子郵件1000301c」,經濟部智慧財產局著作權主題網,2011年3月1日,https://www.tipo.gov.tw/copyright-tw/cp-407-853254-b3f56-301.html,最後瀏覽日:2025年7月1日。 8、經濟部著作權組,「電子郵件1111031」,經濟部智慧財產局著作權主題網,2022年10月31日,https://www.tipo.gov.tw/copyright-tw/cp-407-914789-dec09-301.html,最後瀏覽日:2025年7月1日。 (六)網際網路 1、DeepSeek技術社區,「DeepSeek R1全解析:满血、蒸馏、量化,版本真相大揭秘」,2025年4月2日, https://deepseek.csdn.net/67eca994b40ce155396cec1d.html,最後瀏覽日:2025年7月1日。 2、Dr. Jackei Wong,「OpenAI 模型參數意外洩密!GPT-4o與o1模型規模曝光震撼業界」,2025年1月5日, https://drjackeiwong.com/2025/01/05/openai-%E6%A8%A1%E5%9E%8B%E5%8F%83%E6%95%B8%E6%84%8F%E5%A4%96%E6%B4%A9%E5%AF%86%EF%BC%81gpt-4o-%E8%88%87-o1-%E6%A8%A1%E5%9E%8B%E8%A6%8F%E6%A8%A1%E6%9B%9D%E5%85%89%E9%9C%87%E6%92%BC%E6%A5%AD%E7%95%8C/,最後瀏覽日:2025年7月1日。 3、William,「星辰大模型與DeepSeek-R1助力AI眼鏡性能飛躍」,93913,2025年6月17日,https://www.93913.com/111774.html,最後瀏覽日:2025年7月1日。 4、朱宸佐,「DeepSeek震撼矽谷:AI開源革命與台灣的戰略困境」,未來城市,發布日期:2025年4月14日,網址:https://futurecity.cw.com.tw/article/3667?rec=i2i&from_id=1807&from_index=5,最後瀏覽日:2025年7月11日。 5、吳家豪,「資安業者:駭客用生成式AI 助長社交工程攻擊」,CNA中央通訊社,發布日期:2024年7月16日,網址:https://www.cna.com.tw/news/ait/202407160219.aspx,最後瀏覽日:2025年7月1日。 6、廖紹伶,「下一個DeepSeek來了?百度今開源「Ernie 4.5」AI 模型,專家看好嗎」,2025年6月30日,https://techorange.com/2025/06/30/deepseek-ernie-ai-open/,最後瀏覽日:2025年7月1日。 7、劉芮菁,「電腦比人更中立?招聘系統重男輕女、非裔族群不貸款…歐美國家發現:AI也會有歧視」,今周刊,發布日期:2023年8月23日,網址:https://www.businesstoday.com.tw/article/category/183015/post/202308230063/,最後瀏覽日:2025年7月1日。 8、劉建邦,「刑事局:詐騙集團用生成式AI 提防假投資拐騙」,CNA中央通訊社,發布日期:2024年11月16日,網址:https://www.cna.com.tw/news/asoc/202411160121.aspx,最後瀏覽日:2025年7月1日。 9、「總統是AI選出來的?AI工具對選舉的操弄與影響」,Pourquoi.tw報呱,發布日期:2024年10月27日,網址:https://www.pourquoi.tw/intlnews-nasaoa-241027-1/,最後瀏覽日:2025年7月1日。 二、英文文獻 (一)專書論著 1、Andrew F. Siegel. Practical Business Statistics .7th ed. San Diego, California: Academic Press, 2016. 2、D. POPOVIC. Soft Computing and Intelligent Systems. Theory and Applications. Academic Press, 1999. 3、Grigory Isaakovich Barenblatt. Scaling. Cambridge, United Kingdom: Cambridge University Press. 2003. 4、Ivan Vasilev. Advanced Deep Learning with Python: Design and Implement Advanced next-Generation AI Solutions Using TensorFlow and PyTorch. Birmingham: Packt Publishing Ltd., 2019. 5、Jeff Erickson, Algorithms. Independently published. 2019. https://jeffe.cs.illinois.edu/teaching/algorithms/. 6、Melville B. Nimmer, and David Nimmer. Nimmer on Copyright. 2010 edition. Vol. 1. San Francisco: LexisNexis. 2010. 7、Panos Louridas, Algorithms. Cambridge, Massachusetts: The MIT Press. 2020. 8、Stuart Russell, and Peter Norvig. Artificial Intelligence: A Modern Approach. 4th ed. Pearson, 2021. 9、William S. Strong. “Copyrightable Versus Noncopyrightable Subject Matter” In Copyright Law Practice, 5th Edition. Massachusetts Continuing Legal Education, 2020. (二)期刊與研討會論文 1、Ahmed Frikha, Nassim Walha, Krishna Kanth Nakka, Ricardo Mendes, Xue Jiang, and Xuebing Zhou. “IncogniText: Privacy-Enhancing Conditional Text Anonymization via LLM-Based Private Attribute Randomization.” Neurips Safe Generative AI Workshop 2024, 2024. https://openreview.net/forum?id=JRifjkHove. 2、Alan L. Durham. “Speaking of the World: Fact, Opinion and the Originality Standard of Copyright.” Arizona State Law Journal 33 (2001): 791-848. 3、Alan L. Durham. “The Random Muse: Authorship and Indeterminacy.” William and Mary Law Review 44 (2002): 569-642. 4、Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. “Algorithm Evolution Using Large Language Model.” OpenAI, 2019. https://www.bibsonomy.org/bibtex/1b926ece39c03cdf5499f6540cf63babd. 5、Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer. “A Survey of Quantization Methods for Efficient Neural Network Inference.” In Low-Power Computer Vision, 291-326. New York: Chapman and Hall/CRC, 2022. 6、Anthony Gillioz, Jacky Casas, Elena Mugellini, and Omar Abou Khaled. “Overview of the Transformer-Based Models for NLP Tasks.” 2020 15th Conference on Computer Science and Information Systems (FedCSIS) Held 6-9 September 2020, Sofia, Bulgaria(2020): 179-183. https://doi.org/10.15439/2020F20. 7、Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention Is All You Need”. In Advances in Neural Information Processing Systems 30: 31st Annual Conference on Neural Information Processing Systems (NIPS 2017) Held 4-9 December 2017, Long Beach, California, USA (2017): 5999-6009. https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf. 8、Baoli Li, and Liping Han. “Distance Weighted Cosine Similarity Measure for Text Classification.” Intelligent Data Engineering and Automated Learning – IDEAL 2013 8206 (2013): 611. https://doi.org/10.1007/978-3-642-41278-3_74. 9、Bellegarda, J. R. “Statistical Language Model Adaptation: Review and Perspectives.” Speech Communication 42, no. 1 (2004): 93-108. https://doi.org/10.1016/j.specom.2003.08.002. 10、Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. “Decoupled Knowledge Distillation.” 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, 11943–11952. https://doi.org/10.1109/CVPR52688.2022.01165. 11、Burkay GENÇ, and Hüseyin TUNÇ. “Optimal Training and Test Sets Design for Machine Learning.” Turkish Journal of Electrical Engineering & Computer Sciences 27, no. 2 (2019): 1534-1545. https://doi.org/10.3906/elk-1807-212. 12、Cecily Fuhr. “Copyright Infringement of Literary Works, Including Compilations and Other Fact-Based Works.” American Jurisprudence Proof of Facts 3d 145 (2015): §18. (Updated in 2025). 13、Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner, Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. “Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes.” Findings of the Association for Computational Linguistics: ACL 2023, 2023, 8003-8017. https://aclanthology.org/2023.findings-acl.507/. 14、Craig Joyce, and Tyler T. Ochoa. “Reach Out and Touch Someone: Reflections on the 25th Anniversary of Feist Publications, Inc. v. Rural Telephone Service Co.” Houston Law Review 54 (2016): 257-319. 15、Daniel J. Gervais. “AI Derivatives: The Application to the Derivative Work Right to Literary and Artistic Productions of AI Machines.” Seton Hall Law Review 52 (2022): 1111-1135. 16、Deepak Varma, Alwala Nehansh, and P. Swathy. “Data Preprocessing Toolkit : An Approach to Automate Data Preprocessing.” International Journal of Scientific Research in Engineering and Management (IJSREM) 7, no. 3 (2023): 1–5. https://doi.org/10.55041/IJSREM18270. 17、Diksha Khurana, Aditya Koli, Kiran Khatter, and Sukhdev Singh. “Natural Language Processing: State of the Art, Current Trends and Challenges.” Multimedia Tools and Applications 82 (2023): 3713–3744. 18、Douglas Lichtman. “Copyright As A Rule of Evidence.” Duke Law Journal 52 (2003): 683-742. 19、Edward G. Black, and Michael H. Page. “Add-on Infringements: When Computer Add-Ons and Peripherals Should (and Should Not) Be Considered Infringing Derivative Works Under Lewis Galoob Toys, Inc. v. Nintendo of America, Inc., and Other Recent Decisions.” Hastings Communications and Entertainment Law Journal (COMM/ENT) 15 (1993): 615-652. 20、Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. “LoRA: Low-Rank Adaptation of Large Language Models.” International Conference on Learning Representations(ICLR) 2022 Poster, 2022. https://openreview.net/forum?id=nZeVKeeFYf9. 21、Edward Lee. “Digital Originality.” Vanderbilt Journal of Entertainment and Technology Law 14 (2012): 919-957. 22、Elizabeth M. Saunders. “Copyright Protection for Compilations of Fact: Does the Originality Standard Allow Protection on the Basis of Industrious Collection?” Notre Dame Law Review 62 (1987): 763-778. 23、Elsa Tsioumani, Mike Muzurakis, Yannis Ieropoulos, and Asterios Tsioumanis. “Following the Open-Source Trail Outside the Digital World: The Case of Open-Source Seeds.” TripleC: Communication, Capitalism & Critique 14, no. 1 (2016): 145-162. https://doi.org/10.31269/triplec.v14i1.697. 24、Emilio B. Nicolas. “Why the Ninth Circuit Added Too Much to Subtract Add-on Software from the Scope of Derivative Works Under 17 U.S.C. S 106(2): A Textual Argument.” Syracuse Science & Technology Law Reporter, Fall 2004. 25、Emily Behzadi Cárdenas. “Desettling Fixation.” North Carolina Law Review 102 (2024): 865-923. 26、Emna Baccour, Aiman Erbad, Amr Mohamed, Mounir Hamdi, and Mohsen Guizani. “Active Prompt Caching in Edge Networks for Generative AI and LLMs: An RL-Based Approach.” 2025 IEEE Wireless Communications and Networking Conference (WCNC), 2025. https://doi.org/10.1109/WCNC61545.2025.10978306. 27、Evan Brown. “Fixed Perspectives: The Evolving Contours of the Fixation Requirement in Copyright Law.” Washington Journal of Law, Technology & Arts 10 (2014): 17-34. 28、Graham R. Parslow. “Commentary: The Khan Academy and the Day-Night Flipped Classroom.” Multimedia in Biochemistry and Molecular Biology Education 40, no. 5 (2012): 337–338. https://doi.org/10.1002/bmb.20642. 29、Greg R. Vetter. “Claiming Copyleft in Open Source Software: What If the Free Software Foundation’s General Public License (GPL) Had Been Patented.” Michigan State Law Review 1 (2008): 279-319. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1239380. 30、Gregory Grefenstette. “Tokenization.” In Syntactic Wordclass Tagging, vol 9, Text, Speech and Language Technology, 117-133. Dordrecht: Springer, 1999. https://doi.org/10.1007/978-94-015-9273-4_9. 31、Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Manmohan Chandraker. “Learning Efficient Object Detection Models with Knowledge Distillation.” NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, 742-751. https://dl.acm.org/doi/10.5555/3294771.3294842. 32、Guodong Xu, Ziwei Liu, Xiaoxiao Li, and Chen Change Loy . “Knowledge Distillation Meets Self-Supervision.” Computer Vision – ECCV 2020 12354 (2020): 588-604. https://doi.org/10.1007/978-3-030-58545-7_34. 33、Hao, Yaru, Li Dong, Furu Wei, and Ke Xu. “Self-Attention Attribution: Interpreting Information Interactions Inside Transformer.” In Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 14 (2021): 12963–12971. https://doi.org/ 10.1609/aaai.v35i14.17533. 34、Henry H. Perritt. “Copyright for Robots?” Indiana Law Review 57 (2023): 139-198. 35、Hui Wang, Hanbin Zhao, Xi Li, and Xu Tan. “Progressive Blockwise Knowledge Distillation for Neural Network Acceleration.” Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence(IJCAI-18), 2018, 2769-2775. https://doi.org/10.24963/ijcai.2018/384. 36、Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tai, William Fedus, Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma et al. “Scaling Instruction-Finetuned Language Models.” The Journal of Machine Learning Research 25, no. 1 (2024): 3381-3433. https://dl.acm.org/doi/10.5555/3722577.3722647. 37、Jack B. Hicks. “Copyright and Computer Databases: Is Traditional Compilation Law Adequate?” Texas Law Review 65 (1987): 993-1028. 38、Jang Hyun Cho, and Bharath Hariharan. “On the Efficacy of Knowledge Distillation.” 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, 4793-4801. https://doi.org/10.1109/ICCV.2019.00489. 39、Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, Quoc V. Le. “Finetuned Language Models Are Zero-Shot Learners.” In The Tenth International Conference on Learning Representations, Held 25 April 2022 - 29 April 2022, Virtual Event, 2. https://openreview.net/forum?id=gEZrGCozdqR. 40、Jéssica Rodrigues da Silva, and Helena de M. Caseli. “Sense Representations for Portuguese: Experiments with Sense Embeddings and Deep Neural Language Models.” Language Resources and Evaluation 55, no. 4 (2021): 901-924. https://doi.org/10.1007/s10579-020-09525-1. 41、Jianpeng Cheng, Li Dong, and Mirella Lapata. “Long Short-Term Memory-Networks for Machine Reading”. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Austin, Texas. Association for Computational Linguistics(2016): 551–561. https://aclanthology.org/D16-1053/. 42、Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. “Knowledge Distillation: A Survey.” International Journal of Computer Vision 129 (2021): 1789-1819. https://doi.org/10.1007/s11263-021-01453-z. 43、Jie Liu, Shaowei Chen, Bingquan Wang, Jiaxin Zhang, Na Li, and Tong Xu. “Attention as Relation: Learning Supervised Multi-Head Self-Attention for Relation Extraction.” IJCAI’20: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, 2021, 3787–3793. https://doi.org/10.24963/ijcai.2020/524. 44、John K. Halvey. “A Rose by Any Other Name: Computer Programs and the Idea-Expression Distinction.” Emory Law Journal 34 (1985): 741-776. 45、Juntao Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and Yaodong Yang. “Safe RLHF: Safe Reinforcement Learning from Human Feedback.” The Twelfth International Conference on Learning Representations(ICLR) 2024 Spotlight, 2024, 1-28. https://openreview.net/forum?id=TyFrPOKYXw. 46、Justin Hughes. “The Photographer’s Copyright - Photograph As Art, Photograph As Database.” Harvard Journal of Law & Technology 25 (2012): 339-428. 47、Kenneth Ward Church, Zeyu Chen, and Yanjun Ma. “Emerging Trends: A Gentle Introduction to Fine-Tuning.” Natural Language Engineering 27, no. 6 (2021): 763-778. https://doi.org/10.1017/S1351324921000322. 48、Lerinda Saint Waltrip. “Copyright Law-the Idea/Expression Dichotomy: Where Has It Gone?” Southern Illinois University Law Journal 11 (1987): 411-425. 49、Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray et al. “Training Language Models to Follow Instructions with Human Feedback.” In NIPS’22: Proceedings of the 36th International Conference on Neural Information Processing Systems, 2022, 27730-27744. https://dl.acm.org/doi/10.5555/3600270.3602281. 50、Lydia Pallas Loren. “The Changing Nature of Derivative Works in the Face of New Technologies.” Journal of Small and Emerging Business Law 4 (2000): 57-93. 51、Max Klabunde, Mehdi Ben Amor, Michael Granitzer, and Florian Lemmerich. “Towards Measuring Representational Similarity of Large Language Models.” 37th Conference on Neural Information Processing Systems (NeurIPS 2023), 2023, 1. https://openreview.net/pdf?id=gG5UGgUzDR. 52、Max Klabunde, Tobias Schumacher, Markus Strohmaier, and Florian Lemmerich. “Similarity of Neural Network Models: A Survey of Functional and Representational Measures.” ACM Computing Surveys 57, no. 9 (2025): 242:2. https://doi.org/10.1145/3728458. 53、Michael A. Stanko. “Building an Understanding of How Winning Products Emerge When Open and Proprietary Products Coexist: Evidence from the RepRap Community.” Creativity and Innovation Management 29, no. 3 (2020): 398-412. https://doi-org.proxyone.lib.nccu.edu.tw:8443/10.1111/caim.12376open_in_newISSN0963-1690. 54、Michael Palumbo. “Copyright Protection for the Fruits of Digital Labor: Finding Originality in Digital Wire-Frames.” New England Law Review 44 (2009): 127-157. 55、Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando de Freitas. “Predicting Parameters in Deep Learning.” NIPS’13: Proceedings of the 27th International Conference on Neural Information Processing Systems 2 (2013): 2148 – 2156. https://dl.acm.org/doi/10.5555/2999792.2999852. 56、Muyue Feng, Mao Weixuan, Zimu Yuan, Yang Xiao, Gu Ban, Wei Wang, Shiyang Wang, Qian Tang, Jiahuan Xu, He Su et al. “Open-Source License Violations of Binary Software at Large Scale.” 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER) (2019): 564-568. 57、Neeraj Maddel, Shantipal Ohol, and Anish Khobragade. “Optimizing Llama 3.2 1b Using Quantization Techniques Using Bitsandbytes for Efficient AI Deployment.” In International Journal of Advanced Research (IJAR) 13, no. 03 (2025): 78-88. https://doi.org/10.21474/IJAR01/20538. 58、Niels Henrik Bruun. “Interactively Building Table Reports with Basetable.” The Stata Journal: Promoting Communications on Statistics and Stata 22, no. 2 (2022): 416-429. https://doi.org/10.1177/1536867X221106417. 59、Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin Chen, Chi-Min Chan, Weize Chen et al. “Parameter-Efficient Fine-Tuning of Large-Scale Pre-Trained Language Models.” Nature Machine Intelligence 5 (2023): 220-235. https://doi.org/10.1038/s42256-023-00626-4. 60、Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter Clark, and Ashwin Kalyan. “Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering.” NIPS’22: Proceedings of the 36th International Conference on Neural Information Processing Systems, 2022, 2507-2521. https://openreview.net/forum?id=HjwK-Tc_Bc. 61、Paul F Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and Dario Amodei. “Deep Reinforcement Learning from Human Preferences.” In NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017, 4301-4310. https://dl.acm.org/doi/10.5555/3294996.3295184. 62、Paul Semaan. “Natural Language Generation: An Overview.” Journal of Computer Science & Research (JCSCR) 1, no. 3 (2012): 50-57. http://www.lacsc.org/papers/PaperA6.pdf. 63、Peter Martino. “= Non- + Non-? Clarifying Copyrightability in Databases.” Georgetown Journal of Law and Public Policy 4 (2006): 557-594. 64、Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yujiu Yang. “Connecting Large Language Models with Evolutionary Algorithms Yields Powerful Prompt Optimizers.” ICLR 2024 Poster, 2024. https://openreview.net/forum?id=ZG3RaNIsO8. 65、Rahm, Erhard and Hong Hai Do. “Data Cleaning: Problems and Current Approaches.” IEEE Data(base) Engineering Bulletin 23 (2000): 3-13. 66、Rajiv Ranjan Giri, Richa Indu, and Sushil Chandra Dimri. “Machine learning-enabled techniques for speech categorization.” In Algorithms: Big Data, Optimization Techniques, Cyber Security, 1-20. Berlin: De Gruyter, 2024. https://doi.org/10.1515/9783111229157. 67、Roger C. Schank. “Conceptual Dependency: A Theory of Natural Language Understanding.” Cognitive Psychology 3, no. 4 (1972): 552–631. 68、Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. “High-resolution image synthesis with latent diffusion models”. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021): 10684-10695. arXiv abs/2112.10752. 69、Salvatore Claudio Fanni, Maria Febi, Gayane Aghakhanyan, and Emanuele Neri. Natural Language Processing. In: Klontzas, M.E., Fanni, S.C., Neri, E. (eds) Introduction to Artificial Intelligence. Springer, 2023, 87-99. https://doi.org/10.1007/978-3-031-25928-9_5. 70、Samuel Stanton, Pavel Izmailov, Polina Kirichenko, Alexander A. Alemi, and Andrew Gordon Wilson. “Does Knowledge Distillation Really Work?” NIPS’21: Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021, 6906-6919. https://openreview.net/forum?id=7J-fKoXiReA. 71、Shunyu Yao, Qingqing Ke, Kangtong Li, Qiwei Wang, and Jie Hu. “News GPT: A Large Language Model for Reliable and Hallucination-Controlled News Generation.” RAIIE ’24: Proceedings of the 2024 3rd International Symposium on Robotics, Artificial Intelligence and Information Engineering, 2024, 113-117. https://doi.org/10.1145/3689299.3689320. 72、Song Han, Jeff Pool, John Tran, and William J. Dally. “Learning Both Weights and Connections for Efficient Neural Networks.” In NIPS’15: Proceedings of the 29th International Conference on Neural Information Processing Systems 1 (2015): 1135-1143. https://dl.acm.org/doi/10.5555/2969239.2969366. 73、Stefan Hubanov. “The Multifaceted Nature and Problematic Status of Fixation in U.S. Copyright Law.” Intellectual Property Law Bulletin 11 (2006): 111-126. 74、Steven S. Boyd. “Deriving Originality in Derivative Works: Considering the Quantum of Originality Needed to Attain Copyright Protection in A Derivative Work.” Santa Clara Law Review 40 (2000): 325-378. 75、Sutipong Sutipitakwong, and Pornsuree Jamsri. “Pros and Cons of Tangible and Digital Wireframes.” 2020 IEEE Frontiers in Education Conference (FIE), 2020. https://doi.org/10.1109/FIE44824.2020.9274234. 76、Tamara C. Peters. “Infringement of the Adaptation Right: A Derivative Work Need Not Be ‘Fixed’ for the Law to Be Broken.” Journal of the Copyright Society of the U.S.A 53 (2006): 401-446. 77、Timm Teubner, Christoph M. Flath, Christof Weinhardt, Wil van der Aalst, and Oliver Hinz. “Welcome to the Era of ChatGPT et al.: The Prospects of Large Language Models.” Business & Information Systems Engineering 65 (2023): 95-101. https://doi.org/10.1007/s12599-023-00795-x. 78、Timothy Everett Nielander. “The Mighty Morphin Ninja Mallard: The Standard for Analysis of Derivative Work Infringement in the Digital Age.” Texas Wesleyan Law Review 4 (1997): 1-30. 79、Tyler T. Ochoa. “Copyright, Derivative Works and Fixation: Is Galoob A Mirage, or Does the Form(Gen) of the Alleged Derivative Work Matter?” Santa Clara Computer and High Technology Law Journal 20 (2004): 991-1044. 80、Warren McCulloch, and Walter Pitts. “A Logical Calculus of the Ideas Imminent in Nervous Activity.” Bulletin of Mathematical Biophysics 5 (1943): 115–133. 81、Wenqiang Li, Lina Yu, Min Wu, Jingyi Liu, Meilan Hao, and Yanjie Li. “DoctorGPT: A Large Language Model with Chinese Medical Question-Answering Capabilities.” 2023 International Conference on High Performance Big Data and Intelligent Systems (HDIS), 2023. https://doi.org/10.1109/HDIS60872.2023.10499472. 82、Wenshuo Li, Xinghao Chen, Han Shu, Yehui Tang, and Yunhe Wang. “ExCP: Extreme LLM Checkpoint Compression via Weight-Momentum Joint Shrinking.” ICML’24: Proceedings of the 41st International Conference on Machine Learning, 2024, 27575-27578. https://dl.acm.org/doi/10.5555/3692070.3693173. 83、Xavier Glorot, and Yoshua Bengio. “Understanding the Difficulty of Training Deep Feedforward Neural Networks.” Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics 9 (2010): 249-256. https://proceedings.mlr.press/v9/glorot10a.html. 84、Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep Learning.” Nature 521 (2015): 436-444. https://doi.org/10.1038/nature14539. 85、Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip Yu, and Lichao Sun. “A Survey of AI-Generated Content (AIGC).” ACM Computing Surveys 57, no. 5 (2025): 125:1-38. https://doi.org/10.1145/3704262. 86、Ying Jin, Jiaqi Wang, and Dahua Lin. “Black-Box Knowledge Distillation.” ICLR 2023 Conference Withdrawn Submission, 2023. https://openreview.net/forum?id=x8NPd0MFTf. 87、Yoav Mazeh. “The Multifaceted Nature and Problematic Status of Fixation in U.S. Copyright Law.” Loyola Law and Technology Annual 8 (2009): 109-140. 88、Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. “A Neural Probabilistic Language Model.” The Journal of Machine Learning Research 3 (2003): 1137–1155. https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf. 89、Zheng Li, Xiang Li, Lingfeng Yang, Borui Zhao, Renjie Song, Lei Luo, Jun Li, and Jian Yang. “Curriculum Temperature for Knowledge Distillation.” AAAI’23/IAAI’23/EAAI’23: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence, 2023, 1504-1512. https://doi.org/10.1609/aaai.v37i2.2523. 90、Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo Li, Yuqi Wang, Suqi Sun, Omkar Pangarkar et al. “LLM360: Towards Fully Transparent Open-Source LLMs.” First Conference on Language Modeling (COLM 2024), 2024. https://openreview.net/forum?id=QdWhj0QZFw. 91、Zhi Yang. “A Brief Talk about Camera Phone Photography in the Era of Digital Photography.” Proceedings of the 2018 2nd International Conference on Management, Education and Social Science (ICMESS 2018), 2018, 1304-1306. https://doi.org/10.2991/icmess-18.2018.288. 92、Zhuoliang Zou, and Jun Ai. “Online Prediction of Server Crash Based on Running Data.” 2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C), 2020, 7-14. https://doi.org/10.1109/QRS-C51114.2020.00014. 93、Ziyi Dong, Yao Xiao, Pengxu Wei, and Liang Lin. “Decoder-Only LLMs Are Better Controllers for Diffusion Models.” MM ’24: Proceedings of the 32nd ACM International Conference on Multimedia, Held 28 October 2024 - 1 November 2024, Melbourne VIC Australia, 10957-10965. https://doi.org/10.1145/3664647.3680725. (三)學術論文 1、Amanda Askell, Yuntao Bai, AnnaChen, DawnDrain, DeepGanguli, TomHenighan, Andy Jones, Nicholas Joseph, Ben Mann, Nova DasSarma et al. “A General Language Assistant as a Laboratory for Alignment,” 2021. arXiv abs/2112.00861. 2、Benjamin Feuer, and Chinmay Hegde. “WILDCHAT-50M: A Deep Dive Into the Role of Synthetic Data in Post-Training,” 2025. arXiv abs/2501.18511. 3、Binghai Wang, Rui Zheng, Lu Chen, Yan Liu, Shihan Dou, Caishuang Huang, Wei Shen, Senjie Jin, Enyu Zhou, Chenyu Shi et al. “Secrets of RLHF in Large Language Models Part II Reward Modeling,” 2024. arXiv abs/2401.06080. 4、Chuanpeng Yang, Wang Lu, Yao Zhu, Yidong Wang, Qian Chen, Chenlong Gao, Bingjie Yan, and Yiqiang Chen. “Survey on Knowledge Distillation for Large Language Models: Methods, Evaluation, and Application,” 2024. arXiv abs/2407.01885. 5、DeepSeek-AI. “DeepSeek LLM: Scaling Open-Source Language Models with Longtermism,” 2024. arXiv abs/2401.02954. 6、DeepSeek-AI. “DeepSeek-V3 Technical Report,” 2025. arXiv abs/2412.19437. 7、Eric Fosler-Lussier. “Markov Models and Hidden Markov Models: A Brief Tutorial,” 1998. https://www.di.ubi.pt/~jpaulo/competence/tutorials/hmm-tutorial-1.pdf. 8、ERNIETeam, Baidu. “ERNIE4.5 Technical Report,” 2025. https://yiyan.baidu.com/blog/publication/ERNIE_Technical_Report.pdf. 9、Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the Knowledge in a Neural Network,” 2015. arXiv abs/1503.02531. 10、Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, Colton Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi et al. “RLAIF vs. RLHF: Scaling Reinforcement Learning from Human Feedback with AI Feedback,” 2024. arXiv abs/2309.00267v3. 11、Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman, Naveed Akhtar, Nick Barnes, and Ajmal Mian. “A Comprehensive Overview of Large Language Models,” 2023. arXiv abs/2307.06435. 12、Isabella Catharina Wiest, Fabian Wolf, Marie-Elisabeth Leßmann, Marko van Treeck, Dyke Ferber, Jiefu Zhu, Heiko Boehme, Keno K. Bressem, Hannes Ulrich, Matthias P. Ebert et al. “LLM-AIx: An Open Source Pipeline for Information Extraction from Unstructured Medical Text Based on Privacy Preserving Large Language Models.” MedRxiv [Preprint], 2024. https://doi.org/10.1101/2024.09.02.24312917. 13、James Betker, Gabriel Goh, Li Jing, TimBrooks, Jianfeng Wang, Linjie Li, Lon gOuyang, JuntangZhuang, JoyceLee, YufeiGuo, WesamManassra, PrafullaDhari wal, CaseyChu, YunxinJiao, and Aditya Ramesh. Improving Image Gener ation with Better Captions. n.d. https://cdn.openai.com/papers/dall-e-3.pdf. 14、Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H.Chi, Quoc V. Le, and Denny Zhou. “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models,” 2023. arXiv abs/2201.11903. 15、Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, and Dani Yogatama. “Emergent Abilities of Large Language Models.” Transactions on Machine Learning Research (TMLR), 2022. arXiv abs/2206.07682. 16、Jiaxi Tang, Rakesh Shivanna, Zhe Zhao, Dong Lin, Anima Singh, Ed H. Chi, and Sagar Jain. “Understanding and Improving Knowledge Distillation,” 2020. arXiv abs/2002.03532. 17、Ji-Lun Peng, Sijia Cheng, Egil Diau, Yung-Yu Shih, Po-Heng Chen, Yen-Ting Lin, and Yun-Nung Chen. “A Survey of Useful LLM Evaluation,” 2024. arXiv abs/2406.00936. 18、John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. “Proximal Policy Optimization Algorithms,” 2017. arXiv abs/1707.06347. 19、Manil Shrestha, Yashodha Ravichandran, and Edward Kim. “Secure Multiparty Generative AI,” 2024. arXiv abs/2409.19120. 20、Mengxia Yu, De Wang, Qi Shan, Colorado Reed, and Alvin Wan. “The Super Weight in Large Language Models,” 2024. arXiv abs/2411.07191. 21、Naman Jain, Tianjun Zhang, Wei-Lin Chiang, Joseph E. Gonzalez, Koushik Sen, and Ion Stoica. “LLM-Assisted Code Cleaning For Training Accurate Code Generators,” 2023. arXiv abs/2311.14904. 22、Olga Golovneva, Tianlu Wang, Jason Weston, and Sainbayar Sukhbaatar. “Contextual Position Encoding: Learning to Count What’s Important,” 2024. arXiv abs/2405.18719. 23、OpenAI. “GPT-4 Technical Report,” 2023. arXiv abs/2303.08774. 24、Oscar Nilsson, and Noel Yngwe. “API Latency and User Experience: What Aspects Impact Latency and What Are the Implications for Company Performance?,”(Dissertation) 2022. https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-319516. 25、Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. “Self-Attention with Relative Position Representations,” 2017. arXiv abs/1803.02155v2. 26、Raphael Scheible-Schmitt, and Johann Frei. “GeistBERT: Breathing Life into German NLP,” 2025. arXiv abs/2506.11903. 27、Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua, Wei Shen, Binghai Wang, Yan Liu, Senjie Jin, Qin Liu, Yuhao Zhou et al. “Secrets of RLHF in Large Language Models Part I: PPO,” 2023. arXiv abs/2307.04964. 28、Sebastian Ruder. “An Overview of Gradient Descent Optimization Algorithms,” 2016. arXiv abs/1609.04747. 29、Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-Rong Wen, and Chongxuan Li. “Large Language Diffusion Models,” 2025. arXiv abs/2502.09992. 30、Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier Amatriain, and Jianfeng Gao. “Large Language Models: A Survey,” 2024. arXiv abs/2402.06196. 31、Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier Amatriain, and Jianfeng Gao. “Large Language Models: A Survey,” 2025. arXiv abs/2402.06196. 32、Srinivasan Iyer, Xi Victoria Lin, Ramakanth Pasunuru, Todor Mihaylov, Dániel Simig, Ping Yu, Kurt Shuster, Tianlu Wang, Qing Liu, Punit Singh Koura et al. “OPT-IML: Scaling Language Model Instruction Meta Learning through the Lens of Generalization,” 2022. arXiv abs/2212.12017. 33、Tianyu Ding, Tianyi Chen, Haidong Zhu, Jiachen Jiang, Yiqi Zhong, Jinxin Zhou, Guangzhi Wang, Zhihui Zhu, Ilya Zharkov, and Luming Liang. “The Efficiency Spectrum of Large Language Models: An Algorithmic Survey,” 2024. arXiv abs/2312.00678. 34、Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell et al. “Language models are few-shot learners”. 2020. arXiv abs/2005.14165. 35、Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. “DistilBERT, a Distilled Version of BERT: Smaller, Faster, Cheaper and Lighter,” 2019. arXiv abs/1910.01108. 36、Wang, Xing, Zhaopeng Tu, Longyue Wang and Shuming Shi. “Self-Attention with Structural Position Representations.” 2019. arXiv abs/1909.00383. 37、Wayne Xin Zhao, Kun Zhou, Junyi Li et al. “A Survey of Large Language Models,” 2023. arXiv abs/2303.18223v16. 38、Wayne Xin Zhao, Kun Zhou, Junyi Li et al. “A Survey of Large Language Models,” 2023. arXiv abs/2303.18223v16. 39、Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. “Relational Knowledge Distillation,” 2019. arXiv abs/1904.05068. 40、Xavier Amatriain, Ananth Sankar, Jie Bing, Praveen Kumar Bodigutla, Timothy J. Hazen, and Michaeel Kazi. “Transformer Models: An Introduction and Catalog,” 2024. arXiv /abs/2302.07730. 41、Yang Liu, Jiahuan Cao, Chongyu Liu, Kai Ding, and Lianwen Jin. “Datasets for Large Language Models: A Comprehensive Survey,” 2024. arXiv abs/2402.18041. 42、Yingqian Cui, Jie Ren, Pengfei He, Jiliang Tang, and Yue Xing. “Superiority of Multi-Head Attention in In-Context Linear Regression,” 2024. arXiv abs/2401.17426. 43、Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon et al. “Constitutional AI: Harmlessness from AI Feedback,” 2022. arXiv abs/2212.08073. 44、Zeyu Han, Chao Gao, Jinyang Liu, Jeff (Jun) Zhang, and Sai Qian Zhang. “Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey,” 2024. arXiv abs/2403.14608. 45、Zhihang Yuan, Yuzhang Shang, Yang Zhou, Zhen Dong, Zhe Zhou, Chenhao Xue, Bingzhe Wu, Zhikai Li, Qingyi Gu, Yong Jae Lee et al. “LLM Inference Unveiled: Survey and Roofline Model Insights,” 2025. arXiv abs/2402.16363. (四)司法判決 1、Aalmuhammed v. Lee, 202 F.3d 1227 (9th Cir. 2000). 2、Alfred Bell & Co. v. Catalda Fine Arts, 191 F.2d 99 (2d Cir. 1951). 3、Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240 (3d Cir. 1983). 4、Atari Games Corp. v. Nintendo of Am. Inc., 975 F.2d 832, 842 (Fed. Cir. 1992). 5、Baker v. Selden, 101 U.S. 99, 104, 25 L. Ed. 841 (1879). 6、Burrow-Giles Lithographic Co. v. Sarony, 111 U.S. 53, 59, 4 S. Ct. 279, 28 L. Ed. 349 (1884). 7、Chamberlin v. Uris Sales Corp., 150 F.2d 512 (2d Cir. 1945). 8、Emerson v. Davies, 8 F. Cas. 615 (C.C.D. Mass. 1845). 9、Falwell v. Penthouse Int'l, Ltd., 521 F. Supp. 1204 (W.D. Va. 1981). 10、Feist Publications, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340, 111 S. Ct. 1282, 113 L. Ed. 2d 358 (1991). 11、In re Trade-Mark Cases, 100 U.S. 82, 94, 25 L. Ed. 550 (1879). 12、Int'l News Serv. v. Associated Press, 248 U.S. 215, 250, 39 S. Ct. 68, 76, 63 L. Ed. 211 (1918). 13、Kadrey v. Meta Platforms, Inc., No. 23-CV-03417-VC, 2023 WL 8039640, at *1 (N.D. Cal. Nov. 20, 2023). 14、Kamar Int'l, Inc. v. Russ Berrie & Co., 657 F.2d 1059 (9th Cir. 1981). 15、Key Publications, Inc. v. Chinatown Today Pub. Enters., Inc., 945 F.2d 509 (2d Cir. 1991). 16、Kregos v. Associated Press, 937 F.2d 700 (2d Cir. 1991). 17、Litchfield v. Spielberg, 736 F.2d 1352 (9th Cir. 1984). 18、MAI Sys. Corp. v. Peak Computer, Inc., 991 F.2d 511 (9th Cir. 1993). 19、Mannion v. Coors Brewing Co., 377 F. Supp. 2d 444 (S.D.N.Y. 2005). 20、Meshwerks, Inc. v. Toyota Motor Sales U.S.A., Inc., 528 F.3d 1258 (10th Cir. 2008). 21、Morrissey v. Procter & Gamble Co., 379 F.2d 675 (1st Cir. 1967). 22、Nichols v. Universal Pictures Corp., 45 F.2d 119 (2d Cir. 1930). 23、Peter Pan Fabrics, Inc. v. Martin Weiner Corp., 274 F.2d 487 (2d Cir. 1960). 24、Schrock v. Learning Curve Int'l, Inc., 586 F.3d 513 (7th Cir. 2009). 25、Sony Corp. of Am. v. Universal City Studios, Inc., 464 U.S. 417, 429, 104 S. Ct. 774, 782, 78 L. Ed. 2d 574 (1984). 26、Steeplechase Arts & Prods., L.L.C. v. Wisdom Paths, Inc., 652 F. Supp. 3d 481 (D.N.J. 2023). 27、Tandy Corp. v. Pers. Micro Computers, Inc., 524 F. Supp. 171 (N.D. Cal. 1981) 28、Victor Lalli Enters., Inc. v. Big Red Apple, Inc., 936 F.2d 671 (2d Cir. 1991). (五)政府資料 1、Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS) 2、Berne Convention(1979 Paris Act). 3、H.R. REP. 94-1476, 51, 1976 U.S.C.C.A.N. 5659. 4、U.S. Copyright Office, “Cancellation Decision re: Zarya of the Dawn (VAu001480196), ” (Feb. 21, 2023), https://www.copyright.gov/docs/zarya-of-the-dawn.pdf. (last visited: 2025.07.01) 5、WIPO Copyright Treaty – WCT. 6、World Intellectual Property Organization. WIPO Intellectual Property Handbook: Policy, Law and Use(WIPO Publication, 2004), 441. https://tind.wipo.int/record/28661/files/wipo_pub_489.pdf. (六)網際網路 1、“The Open Source Definition,” open source initiative, July 7, 2006 (last modified: February 16, 2024). https://opensource.org/osd. (last visited: 2025.07.01) 2、AIVA. “AIVA,” n.d. https://creators.aiva.ai/. (last visited: 2025.07.01) 3、Akshit Mehra. “Data Collection and Preprocessing for Large Language Models.” LABELLERR, September 27, 2024. https://www.labellerr.com/blog/data-collection-and-preprocessing-for-large-language-models/. (last visited: 2025.07.01) 4、baidu. “ERNIE-4.5-300B-A47B-Paddle.” Hugging Face, June 28, 2025. https://huggingface.co/baidu/ERNIE-4.5-300B-A47B-Paddle. (last visited: 2025.07.01) 5、Chat GPT Is Eating the World. “Updated Map of All 42 Copyright Suits v. AI Companies (Jun. 12, 2025),” June 12, 2025. https://chatgptiseatingtheworld.com/2025/06/12/updated-map-of-all-42-copyright-suits-v-ai-companies-jun-12-2025/. (last visited: 2025.07.01) 6、CourtListener. “Kadrey v. Meta Platforms, Inc. Complaint — Document #1,” January 25, 2024. https://www.courtlistener.com/docket/67569326/1/kadrey-v-meta-platforms-inc/.(last visited: 2025.07.01) 7、CourtListener. Zhang v. Google LLC Complaint — Document #1,” April 26, 2024. https://www.courtlistener.com/docket/68477933/1/zhang-v-google-llc/.(last visited: 2025.07.01) 8、deepseek-ai. “DeepSeek-R1.” Hugging Face, n.d. https://huggingface.co/deepseek-ai/DeepSeek-R1/tree/main. (last visited: 2025.07.01) 9、derek-thomas. “Datasets: Derek-Thomas/ScienceQA.” Hugging Face, February 10, 2023. https://huggingface.co/datasets/derek-thomas/ScienceQA/viewer?views%5B%5D=train&row=18. (last visited: 2025.07.01) 10、GitHub. “DeepSeek-V3: Open-Source Weights and Inference Code,” Last modified December 2024. https://github.com/deepseek-ai/DeepSeek-V3. (last visited: 2025.07.01) 11、Has the AI rally gone too far, UBS, https://www.ubs.com/global/en/wealthmanagement/insights/chief-investment-office/house-view/daily/2023/latest-25052023.html. (last visited: 2025.07.01) 12、Huzefa Chawre. “Understanding Data Processing Techniques for LLMs.” TURING, November 21, 2023. https://www.turing.com/resources/understanding-data-processing-techniques-for-llms. (last visited: 2025.07.01) 13、Imarena-ai. “Chatbot Arena LLM Leaderboard: Community-driven Evaluation for Best LLM and AI chatbots.” Hugging Face, n.d. https://huggingface.co/spaces/lmarena-ai/chatbot-arena-leaderboard. (last visited: 2025.07.01) 14、Ivan Belcic, and Cole Stryker. “What Are Model Parameters?” IBM, May 5, 2025. https://www.ibm.com/think/topics/model-parameters. (last visited: 2025.07.01) 15、Jason Gong. “Is DeepSeek Open Source? Why It Matters in 2025.” bardeen, February 10, 2025. https://www.bardeen.ai/answers/is-deepseek-open-source. (last visited: 2025.07.11) 16、Leonard Lin. “Shisa V2 405B: Japan’s Highest Performing LLM.” SHISA. AI, June 3, 2025. https://shisa.ai/posts/shisa-v2-405b/. (last visited: 2025.07.01) 17、meta-llama. “Meta-Llama-3-8B.” Hugging Face, n.d. https://huggingface.co/meta-llama/Meta-Llama-3-8B/tree/main. (last visited: 2025.07.01) 18、Noor Fatima. “Understanding the Key Files in a Large Language Model (LLM).” Medium, November 29, 2024. https://medium.com/@noorfatimaafzalbutt/understanding-the-key-files-in-a-large-language-model-llm-bce17a027370. (last visited: 2025.07.01) 19、Open Source Seed Initiative. “About,” n.d. https://osseeds.org/about/. (last visited: 2025.07.01) 20、Perplexity AI Team. “Open-Sourcing R1 1776.” Perplexity AI, February 19, 2025. https://www.perplexity.ai/hub/blog/open-sourcing-r1-1776. (last visited: 2025.07.01) 21、Qwen. “Qwen-7B-Chat.” Hugging Face, September 24, 2023. https://huggingface.co/Qwen/Qwen-7B-Chat. (last visited: 2025.06.18) 22、Rick Merritt. “AI Opener: OpenAI’s Sutskever in Conversation With Jensen Huang.” NVIDIA, March 22, 2023. https://blogs.nvidia.com/blog/sutskever-openai-gtc/. (last visited: 2025.07.01) 23、Robert Hulse, Tyler G. Newby, Stuart P. Meyer, and Fredrick Tsang. “DeepSeek, Model Distillation, and the Future of AI IP Protection.” FENWICK, February 3, 2025. https://www.fenwick.com/insights/publications/deepseek-model-distillation-and-the-future-of-ai-ip-protection. (last visited: 2025.07.01) 24、sanjayMSFT. “Where Does an LLM Keep All That Knowledge? A Peek into the Physical Side of AI.” Microsoft Tech Community, May 5, 2025. https://techcommunity.microsoft.com/blog/machinelearningblog/where-does-an-llm-keep-all-that-knowledge-a-peek-into-the-physical-side-of-ai/4410287. (last visited: 2025.07.01) 25、Stable Diffusion. “Stable Diffusion Online,” n.d. https://stablediffusionweb.com/. (last visited: 2025.07.01) 26、wikimedia. “Datasets: wikimedia/wikipedia.” Hugging Face, Nov 10, 2023. https://huggingface.co/datasets/wikimedia/wikipedia/viewer/20231101.zh?views%5B%5D=_20231101zh. (last visited: 2025.07.01) |
| 描述: | 碩士 國立政治大學 科技管理與智慧財產研究所 112364210 |
| 資料來源: | http://thesis.lib.nccu.edu.tw/record/#G0112364210 |
| 資料類型: | thesis |
| 顯示於類別: | [科技管理與智慧財產研究所] 學位論文
|
文件中的檔案:
| 檔案 |
描述 |
大小 | 格式 | 瀏覽次數 |
| 421001.pdf | | 3981Kb | Adobe PDF | 0 | 檢視/開啟 |
|
在政大典藏中所有的資料項目都受到原著作權保護.
|