English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118786/149850 (79%)
Visitors : 81705242      Online Users : 3961
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/159320


    Title: 具有 AR(1) 結構之時間性零膨脹卜瓦松模型的貝式分析
    Bayesian Analysis of a Temporal Zero-Inflated Poisson Model with First-Order Autoregressive Structure
    Authors: 吳典倚
    Wu, Tien-Yi
    Contributors: 黃佳慧
    洪芷漪

    Huang, Chia-Hui
    Hong, Jyy-I

    吳典倚
    Wu, Tien-Yi
    Keywords: 零膨脹卜瓦松模型
    AR(1) 結構
    貝式推論
    Pólya-Gamma增補
    計數資料分析
    隨機效應
    Zero-inflated Poisson model
    AR(1) structure
    Bayesian inference
    Pólya-Gamma augmentation
    count data analysis
    random effect
    Date: 2025
    Issue Date: 2025-09-01 16:30:48 (UTC+8)
    Abstract: 在許多應用領域中,計數資料經常會出現大量的零值,導致傳統的卜
    瓦松或負二項迴歸模型無法有效地處理過多零值(excess zeros)的情形。因此,需要透過零膨脹模型(Zero-Inflated Models)來處理此類資料,該模型認為觀察值零來自兩種不同的生成機制:結構零以及隨機零。本研究針對具有時間特徵之零膨脹計數資料,提出一個具備AR(1) 結構的時間性零膨脹卜瓦松模型,並採用貝式方法進行推論。本模型在邏輯斯與計數兩部分共享一組具有時間自相關的隨機效應,以捕捉潛在的時間相依結構。我們引入Pólya-Gamma 隨機變數,使後驗分布得以轉換為條件共軛形式,進一步提升MCMC 抽樣的效率與穩定性。透過模擬研究驗證,在不同觀察期與自相關強度下,模型皆能提供穩定且準確的參數估計。最後,本研究將模
    型應用於2020 年佛羅里達州COVID-19 死亡資料,說明其在處理實際零膨
    脹時間性計數資料上的實用性與可行性。
    In many applied fields, count data often contain an excessive number of zeros, making it difficult for traditional Poisson or negative binomial regression models to handle such zero inflation effectively. To solve this problem, zero-inflated models are commonly used. These models assume that observed zeros come from two distinct sources: structural zeros and random zeros. This study proposes a Bayesian zero-inflated Poisson (ZIP) model with a temporal feature, incorporating an AR(1) structure to account for time dependence. In the proposed model, a shared set of temporally autocorrelated random effects is introduced in both the logistic and count components to capture the underlying temporal dependence. To facilitate efficient posterior sampling, we adopt the Pólya-Gamma data augmentation approach, which transforms the posterior into a conditionally conjugate form and improves the efficiency and stability of MCMC sampling. Simulation studies under various time lengths and autocorrelation strengths demonstrate that the model provides stable and accurate parameter estimates. Finally, the model is applied to the daily COVID-19 death counts of Florida from June to July 2020, demonstrating its usefulness in analyzing zero-inflated temporal count data.
    Reference: [1] Deepak K. Agarwal, Alan E. Gelfand, and Steven Citron-Pousty. Zero-inflated models with application to spatial count data. Environmental and Ecological Statistics, 9(4):341–355, 2002.
    [2] Jean-François Angers and Atanu Biswas. A Bayesian analysis of zero-inflated generalized Poisson model. Computational Statistics & Data Analysis, 42(1-2):37–46, 2003.
    [3] Markéta Arltová and Darina Fedorová. Selection of Unit Root Test on the Basis of Length of the Time Series and Value of AR (1) Parameter. Statistika: Statistics & Economy
    Journal, 96(3), 2016.
    [4] Siddhartha Chib and Edward Greenberg. Understanding the Metropolis-Hastings Algorithm. The American Statistician, 49(4):327–335, November 1995.
    [5] Felix Famoye and Karan P. Singh. Zero-inflated generalized Poisson regression model with an application to domestic violence data. Journal of Data Science, 4(1):117–130, 2006.
    [6] Alan E. Gelfand and Adrian F. M. Smith. Sampling-Based Approaches to Calculating Marginal Densities. Journal of the American Statistical Association, 85(410):398–409, June 1990.
    [7] Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin. Bayesian Data Analysis. Chapman and Hall/CRC, 3rd edition, 2013.
    [8] Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, (6):721–741, 1984.
    [9] Sujit K. Ghosh, Pabak Mukhopadhyay, and Jye-Chyi(JC) Lu. Bayesian analysis of zero-inflated regression models. Journal of Statistical Planning and Inference, 136(4):1360–
    1375, April 2006.
    [10] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1):97–109, April 1970.
    [11] Qing He and Hsin-Hsiung Huang. A framework of zero-inflated Bayesian negative binomial regression models for spatiotemporal data. Journal of Statistical Planning and
    Inference, 229:106098, March 2024.
    [12] Andréas Heinen. Modelling Time Series Count Data: An Autoregressive Conditional Poisson Model. SSRN Electronic Journal, 2003.
    [13] Diane Lambert. Zero-Inflated Poisson Regression, with an Application to Defects in Manufacturing. Technometrics, 34(1):1, February 1992.
    [14] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller. Equation of state calculations by fast computing machines. The Journal
    of Chemical Physics, 21(6):1087–1092, 1953.
    [15] Yongyi Min and Alan Agresti. Random effect models for repeated measures of zero-inflated count data. Statistical Modelling, 5(1):1–19, April 2005.
    [16] Nicholas G. Polson, James G. Scott, and Jesse Windle. Bayesian inference for logistic models using Pólya–Gamma latent variables. Journal of the American Statistical Association, 108(504):1339–1349, 2013.
    Description: 碩士
    國立政治大學
    應用數學系
    111751011
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111751011
    Data Type: thesis
    Appears in Collections:[Department of Mathematical Sciences] Theses

    Files in This Item:

    File Description SizeFormat
    101101.pdf2241KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback