資料載入中.....
|
請使用永久網址來引用或連結此文件:
https://nccur.lib.nccu.edu.tw/handle/140.119/159392
|
題名: | SnSe 與 Sb2Te3 奈米片的製備與熱電性質 Fabrication and Characterization of Thermoelectric Properties of SnSe and Sb2Te3 Nanoflakes |
作者: | 吳嵐熙 Wu, Lan-Hsi |
貢獻者: | 陳洋元 Chen, Yang-Yuan 吳嵐熙 Wu, Lan-Hsi |
關鍵詞: | 奈米片 SnSe Sb2Te3 |
日期: | 2025 |
上傳時間: | 2025-09-01 16:51:55 (UTC+8) |
摘要: | SnSe與Sb2Te3皆為許多國際團隊研究的熱電材料,本研究以CVD系統控制不同參數進而生長SnSe與Sb2Te3的奈米片,以探討當材料形貌變為接近二維時,其熱電性質是否會更好。 當材料生長成薄片後,使用EDX可以獲得樣品的成分比例,以確認原子百分比是否如我們的預期,而TEM可以分析奈米薄片的生長軸向,讓我們對於樣品其晶體結構有更明確的瞭解,使用OM、SEM及AFM確認奈米薄片幾何形貌及厚度。我們使用了自己設計的量測晶片,將奈米薄片轉印至晶片中心,透過微影製程的方式對樣品做個別的延伸電極,製程需使用E-Beam writer、RIE、熱蒸鍍系統及熱處理機。此研究使用實驗室自架的量測系統,可以針對樣品做熱電性質的測量,並藉由Labview自動控制儀器,使測量進行的更準確且快速。 我們各別測得了在400 K時SnSe的Power Factor為0.067 μWcm-1K-2,而Sb2Te3在400 K時的Power Factor為8.32 μWcm-1K-2。 SnSe and Sb₂Te₃ are widely studied thermoelectric materials by numerous international research teams. In this study, a chemical vapor deposition (CVD) system was used to control various growth parameters to synthesize SnSe and Sb₂Te₃ nanoflakes. The objective was to investigate whether the thermoelectric properties improve when the morphology of the materials approaches a two-dimensional (2D) structure. After the materials were synthesized in nanoflake form, energy-dispersive X-ray spectroscopy (EDX) was used to analyze their elemental composition and verify whether the atomic percentages met our expectations. Transmission electron microscopy (TEM) was employed to determine the growth orientation of the nanoflakes, providing insights into their crystal structures. The morphology and thickness of the nanoflakes were further characterized using optical microscopy (OM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). We utilized a custom-designed measurement chip, onto which the nanoflakes were transferred to the central region. Individual extended electrodes were fabricated through a photolithography process involving the use of an electron beam writer, reactive ion etching (RIE), thermal evaporation system, and annealing furnace. The thermoelectric properties were measured using a self-built laboratory measurement system. The entire measurement process was automated via LabVIEW-based instrument control, enhancing both precision and efficiency. The power factor of SnSe at 400 K was measured to be 0.067 μW·cm⁻¹·K⁻², while that of Sb₂Te₃ at 400 K was found to be 8.32 μW·cm⁻¹·K⁻². |
參考文獻: | [1]. 陳洋元,能源新世紀 神奇的熱電材料,中央研究院物理研究所,低溫物理實驗室,上網日期114年07月05日,檢自:http://www.phys,sinica.edu.tw/~lowtemp/research.htm [2]. Liu, S., Sun, N., Liu, M., Sucharitakul, S., & Gao, X. (2018). Nanostructured SnSe: Synthesis, doping, and thermoelectric properties. Journal of Applied Physics, 123(11). [3]. Zhao, L. D., Lo, S. H., Zhang, Y., Sun, H., Tan, G., Uher, C., ... & Kanatzidis, M. G. (2014). Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. nature, 508(7496), 373-377. [4]. Zhang, S., Luo, H., Wang, H., Liu, J., Suvorova, A., Ren, Y., ... & Lei, W. (2024). Controlled growth of Sb2Te3 nanoplates and their applications in ultrafast near-infrared photodetection. Optical Materials, 150, 115220. [5]. Luo, H., Pan, W., Liu, J., Wang, H., Zhang, S., Ren, Y., ... & Lei, W. (2025). Controlled growth of high-quality SnSe nanoplates assisted by machine learning. Journal of Materials Chemistry A, 13(1), 257-266. [6]. Chiu, M. H., Ji, X., Zhang, T., Mao, N., Luo, Y., Shi, C., ... & Kong, J. (2023). Growth of large‐sized 2D ultrathin SnSe crystals with in‐plane ferroelectricity. Advanced Electronic Materials, 9(4), 2201031. [7]. Giani, A., Boulouz, A., Pascal-Delannoy, F., Foucaran, A., Charles, E., & Boyer, A. (1999). Growth of Bi2Te3 and Sb2Te3 thin films by MOCVD. Materials Science and Engineering: B, 64(1), 19-24. [8]. Lewin, M., Mester, L., Saltzmann, T., Chong, S. J., Kaminski, M., Hauer, B., ... & Taubner, T. (2018). Sb2Te3 growth study reveals that formation of nanoscale charge carrier domains is an intrinsic feature relevant for electronic applications. ACS Applied Nano Materials, 1(12), 6834-6842. [9]. Qin, H., Zhu, J., Cui, B., Xie, L., Wang, W., Yin, L., ... & Sui, J. (2019). Achieving a high average zT value in Sb2Te3-based segmented thermoelectric materials. ACS Applied Materials & Interfaces, 12(1), 945-952. [10]. Wei, M., Shi, X. L., Zheng, Z. H., Li, F., Liu, W. D., Xiang, L. P., ... & Chen, Z. G. (2022). Directional thermal diffusion realizing inorganic Sb2Te3/Te hybrid thin films with high thermoelectric performance and flexibility. Advanced Functional Materials, 32(45), 2207903. [11]. 張凱鈞(2016),微結構熱電陣列之製程與研究,碩士論文,國立臺北科技大學,機電整合研究所, 臺北市大安區忠孝東路三段1號。 [12]. 蔡承勳(2017),碲化鍺摻雜鉍之熱電性質探討,碩士論文,國立臺北科技大學,製造科技研究所,臺北市大安區忠孝東路三段1號。 [13]. 蔡瑋瀚(2013),鉍-銻-碲單晶奈米線之製備與熱電性質研究,碩士論文,國立臺灣師範大學,物理研究所,臺北市大安區和平東路一段129 號。 [14]. Das, D., Malik, K., Deb, A. K., Dhara, S., Bandyopadhyay, S., & Banerjee, A. (2015). Defect induced structural and thermoelectric properties of Sb2Te3 alloy. Journal of Applied Physics, 118(4). [15]. Goncalves, L. M., Alpuim, P., Rolo, A. G., & Correia, J. H. (2011). Thermal co-evaporation of Sb2Te3 thin-films optimized for thermoelectric applications. Thin Solid Films, 519(13), 4152-4157. [16]. Hinsche, N. F., Zastrow, S., Gooth, J., Pudewill, L., Zierold, R., Rittweger, F., ... & Mertig, I. (2015). Impact of the topological surface state on the thermoelectric transport in Sb2Te3 thin films. Acs Nano, 9(4), 4406-4411. [17]. Hong, J. E., Lee, S. K., & Yoon, S. G. (2014). Enhanced thermoelectric properties of thermal treated Sb2Te3 thin films. Journal of alloys and compounds, 583, 111-115. [18]. Venkatasubramanian, R., Colpitts, T., Watko, E., Lamvik, M., & El-Masry, N. (1997). MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications. Journal of crystal growth, 170(1-4), 817-821. [19]. Wanarattikan, P., Jitthammapirom, P., Sakdanuphab, R., & Sakulkalavek, A. (2019). Effect of grain size and film thickness on the thermoelectric properties of flexible Sb2Te3 thin films. Advances in Materials Science and Engineering, 2019(1), 6954918. [20]. Li, F., Wang, H., Huang, R., Chen, W., & Zhang, H. (2022). Recent advances in SnSe nanostructures beyond thermoelectricity. Advanced Functional Materials, 32(26), 2200516. [21]. Zhao, L. D., Chang, C., Tan, G., & Kanatzidis, M. G. (2016). SnSe: a remarkable new thermoelectric material. Energy & Environmental Science, 9(10), 3044-3060. [22]. Li, L., Chen, Z., Hu, Y., Wang, X., Zhang, T., Chen, W., & Wang, Q. (2013). Single-layer single-crystalline SnSe nanosheets. Journal of the American Chemical Society, 135(4), 1213-1216. [23]. Xiao, Y., Chang, C., Pei, Y., Wu, D., Peng, K., Zhou, X., ... & Zhao, L. D. (2016). Origin of low thermal conductivity in SnSe. Physical Review B, 94(12), 125203. |
描述: | 碩士 國立政治大學 應用物理研究所 111755004 |
資料來源: | http://thesis.lib.nccu.edu.tw/record/#G0111755004 |
資料類型: | thesis |
顯示於類別: | [應用物理研究所 ] 學位論文
|
文件中的檔案:
檔案 |
大小 | 格式 | 瀏覽次數 |
500401.pdf | 9481Kb | Adobe PDF | 0 | 檢視/開啟 |
|
在政大典藏中所有的資料項目都受到原著作權保護.
|