English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 118260/149296 (79%)
造訪人次 : 77363445      線上人數 : 1057
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/159393


    題名: 以數位量子電腦模擬價鍵態動力學
    Simulating the dynamics of a valence bond state with digital quantum computers
    作者: 黃靖泰
    Huang, Ching-Tai
    貢獻者: 林瑜琤
    Lin, Yu-Cheng
    黃靖泰
    Huang, Ching-Tai
    關鍵詞: 含噪聲中尺度量子計算
    Hadamard 測試
    隨機測量
    經典影子
    Rényi 糾纏熵
    Loschmidt 回聲
    Noisy Intermediate-Scale Quantum (NISQ) computation
    Hadamard test
    randomized measurement
    classical shadow
    Rényi entanglement entropy
    Loschmidt echo
    日期: 2025
    上傳時間: 2025-09-01 16:52:09 (UTC+8)
    摘要: 本研究以 IBM Quantum 提供之量子電腦與模擬器,實作一維完全二聚化 XXZ 自旋-1/2反鐵磁鏈之量子淬火動力學,並透過「Hadamard 測試」(Hadamard test) 與「隨機測量」兩種方法計算隨時間演化之 Rényi 糾纏熵與 Loschmidt 回聲。我們以一價鍵固態為初始態,進行 XXZ 自旋鏈具各種非同向性參數之淬火實驗,比較兩種方法的效能及擴展性。
    Hadamard 測試可直接估算由完全二聚化 XXZ 自旋鏈產生的任意時間點之量子態係數,能準確求得小系統於真實量子機器模擬之結果。然而當系統尺寸增加,因電路深度上升與係數絕對值遞減,在具噪聲的真實量子電腦上將導致顯著失真的結果,侷限其僅適用小系統模擬。為克服上述侷限,我們利用量子電路執行時間演化。因哈密頓量完全二聚化性質,我們得以在無 Trotter 誤差情形下以量子電路製備不同時間點之量子態,並進一步以隨機測量及其後處理法估算 Rényi 糾纏熵與 Loschmidt 回聲。在隨機測量選取量子閘方面,我們考慮兩種隨機基底轉換:Haar 隨機單量子閘以及隨機 Pauli 測量。隨機 Pauli 測量在真實量子硬體執行成本較低,可在現有資源下提供可靠的數據。在後處理部分,我們比較 Hamming 距離方法與經典影子 (classical shadow) 技術。我們實驗結果顯示,經典影子後處理法在高糾纏態下表現佳,具低誤差,而 Hamming 距離法在精確度上具整體穩定性。
    綜合而言,Hadamard 測試適用於小系統高精確度交疊計算;而隨機測量法則更適用於含噪聲中尺度量子計算,具較高的實用性與擴展性。本研究展示兩類方法在不同情境下的優勢與限制,亦提供未來研究多體量子模擬與評估量子電腦效能之基礎。
    This thesis investigates the quench dynamics of a one-dimensional fully dimerized spin-1/2 XXZ antiferromagnetic chain using IBM Quantum computers and simulators. Two approaches—the Hadamard test and randomized measurements—are employed to evaluate the time-evolved Rényi entanglement entropy and Loschmidt echo. We initiate the dynamics from a valence-bond solid and evolve it under the XXZ Hamiltonian with a range of anisotropy parameters, using this setting to benchmark the performance and scalability of these two methods.
    The Hadamard test provides direct amplitude estimation of the time-evolved quantum state generated by the fully dimerized Hamiltonian, yielding high-precision results for small systems even on real quantum devices. However, as system size increases, deeper circuits and smaller amplitude magnitudes significantly reduce accuracy on noisy hardware, restricting its use to small-scale simulations. To overcome this limitation, we execute Trotter-error-free time-evolution circuits for the dimerized XXZ chain and apply randomized measurement techniques to estimate observables. We compare Haar-random single-qubit unitaries and random Pauli measurements, with the latter offering lower hardware overhead and reliable performance on current hardware. For post-processing, we assess both the Hamming distance method and the classical shadow technique. Our results show that classical shadows provide lower estimation errors in highly entangled regimes, while the Hamming distance method provides robust performance across parameter ranges.
    In summary, the Hadamard test is well-suited for high-precision overlap estimation in small systems, whereas randomized measurement methods offer greater practicality and scalability for noisy intermediate-scale quantum (NISQ) computations. This study clarifies the strengths and limitations of both approaches under various scenarios and provides a foundation for future studies in many-body quantum simulation and quantum hardware benchmarking.
    參考文獻: [1] P. W. Anderson. “The Resonating Valence Bond State in La2CuO4 and Supercon-ductivity.” Science 235 (1987), p. 1196.
    [2] H.-C. Chang, H.-C. Hsu, and Y.-C. Lin. “Probing entanglement dynamics and topo-logical transitions on noisy intermediate-scale quantum computers.” Phys. Rev. Res. 7 (2025), p. 013043.
    [3] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.
    [4] S. Liang, B. Doucot, and P. W. Anderson. “Some New Variational Resonating-Valence-Bond-Type Wave Functions for the Spin-½ Antiferromagnetic Heisenberg Model on a Square Lattice.” Phys. Rev. Lett. 61 (1988), p. 365.
    [5] W. Marshall. “Antiferromagnetism.” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 232 (1955), p. 48.
    [6] B. Sutherland. “Systems with resonating-valence-bond ground states: Correlations and excitations.” Phys. Rev. B 37 (1988), p. 3786.
    [7] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. “Quantum algorithms revisited.” Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454 (1998), p. 339.
    [8] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf. “Quantum Fingerprinting.” Phys. Rev. Lett. 87 (2001), p. 167902.
    [9] L. C. Tazi, D. M. Ramo, and A. J. W. Thom. Shallow Quantum Scalar Products with Phase Information. 2024. arXiv: 2411.19072 [quant-ph].
    [10] M. Heyl, A. Polkovnikov, and S. Kehrein. “Dynamical Quantum Phase Transitions in the Transverse-Field Ising Model.” Phys. Rev. Lett. 110 (2013), p. 135704.
    [11] M. Heyl. “Dynamical quantum phase transitions: a review.” Reports on Progress in Physics 81 (2018), p. 054001.
    [12] N. Hatano and M. Suzuki. “Finding exponential product formulas of higher orders.” Quantum annealing and other optimization methods. Springer, 2005, p. 37.
    [13] A. Elben, S. T. Flammia, H.-Y. Huang, R. Kueng, J. Preskill, B. Vermersch, and P. Zoller. “The randomized measurement toolbox.” Nature Reviews Physics 5 (2023), p. 9.
    [14] T. Brydges, A. Elben, P. Jurcevic, B. Vermersch, C. Maier, B. P. Lanyon, P. Zoller, R. Blatt, and C. F. Roos. “Probing Rényi entanglement entropy via randomized measurements.” Science 364 (2019), p. 260.
    [15] A. Elben, J. Yu, G. Zhu, M. Hafezi, F. Pollmann, P. Zoller, and B. Vermersch. “Many-body topological invariants from randomized measurements in synthetic quantum matter.” Science advances 6 (2020), eaaz3666.
    [16] H.-Y. Huang, R. Kueng, and J. Preskill. “Predicting Many Properties of a Quantum System from Very Few Measurements.” Nature Physics 16 (2020), p. 1050.
    [17] A. Elben, B. Vermersch, C. F. Roos, and P. Zoller. “Statistical correlations between locally randomized measurements: A toolbox for probing entanglement in many-body quantum states.” Phys. Rev. A 99 (2019), p. 052323.
    [18] J. Vovrosh, K. E. Khosla, S. Greenaway, C. Self, M. S. Kim, and J. Knolle. “Simple mitigation of global depolarizing errors in quantum simulations.” Physical Review E 104 (2021), p. 035309.
    [19] O. Kiss, M. Grossi, and A. Roggero. “Quantum error mitigation for Fourier moment computation.” Phys. Rev. D 111 (2025), p. 034504.
    [20] S. Chen, W. Yu, P. Zeng, and S. T. Flammia. “Robust Shadow Estimation.” PRX Quantum 2 (2021), p. 030348.
    [21] H. Jnane, J. Steinberg, Z. Cai, H. C. Nguyen, and B. Koczor. “Quantum Error Mitigated Classical Shadows.” PRX Quantum 5 (2024), p. 010324.
    描述: 碩士
    國立政治大學
    應用物理研究所
    112755001
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0112755001
    資料類型: thesis
    顯示於類別:[應用物理研究所 ] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    500101.pdf5569KbAdobe PDF0檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋