English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118260/149296 (79%)
Visitors : 77363411      Online Users : 1070
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/159396


    Title: 透過自動編碼器進行量子錯誤緩解
    Quantum Error Mitigation via Autoencoder Neural Networks
    Authors: 林孝道
    Lin, Xiao-Dao
    Contributors: 許琇娟
    Hsu, Hsiu-Chuan
    林孝道
    Lin, Xiao-Dao
    Keywords: 量子錯誤緩解
    深度學習
    卷積神經網絡
    卷積自動編碼器
    Quantum Error Mitigation
    Deep learning
    Convolutional Neural Networks
    Convolutional Autoencoder
    Date: 2025
    Issue Date: 2025-09-01 16:52:49 (UTC+8)
    Abstract: 近年來,量子計算受到廣泛關注,相關演算法與應用正積極發展。然而,現階段的量子硬體仍面臨多種量子噪聲的限制,包括操作閘不完美、去相干現象以及量測誤差等。為應對這些挑戰,研究者提出了多種量子錯誤緩解(Quantum Error Mitigation)方法,其中不少透過對量測機率分布進行後處理來減少誤差。儘管成效顯著,此類方法往往需要額外的硬體或計算資源。
    本論文提出一種基於機器學習的量子錯誤緩解方法,在降低硬體複雜度的同時,提升量測機率分布的準確性。該方法採用最初用於圖像去噪的卷積自動編碼器(Convolutional Autoencoder),並以深度從1至18的4量子位元隨機電路為訓練資料,透過 Qiskit 模擬器分別生成理想與含噪聲的量測結果。訓練過程使用 Kullback-Leibler(KL)散度作為損失函數,採用 Adam 優化器,進行 500 個訓練週期,最終在驗證集上達到平均 95% 的降噪效果,且未出現過擬合跡象。
    為進一步檢驗模型對不同量子態與演算法的適用性,本研究在格羅弗演算法(Grover's Algorithm)、量子傅立葉轉換(Quantum Fourier Transform)、Haar 隨機電路以及平凡順磁系統(Trivial Paramagnet)上進行測試。結果顯示,本方法能穩定且有效地抑制量測噪聲,顯示其在噪聲中等規模量子(NISQ)裝置中具有應用潛力。此外,鑑於真實量子電腦擁有不同的噪聲特徵,預訓練模型利用 IBM Quantum(IBMQ)提供的 Sherbrooke 量子處理器生成的小型資料集進行微調(fine-tuning),同樣獲得良好結果,顯示方法的可移植性與適應性。本次研究致力於發展實用、且基於學習的量子噪聲減緩技術。
    Quantum computing has witnessed growing interest in recent years, with a variety of quantum algorithms and applications being actively explored. However, the current state of quantum hardware faces significant limitations due to various sources of quantum noise, including gate imperfections, decoherence, readout errors, and etc. To address these challenges, numerous error mitigation strategies have been proposed, typically involving post-processing of measurement probability distributions. While effective, many such approaches introduce additional hardware or computational overhead.
    This thesis explores a machine learning-based method for quantum error mitigation that minimizes hardware complexity while improving the accuracy of measurement probability distributions. A convolutional neural network (CNN) autoencoder, originally developed for image denoising, was adapted for this purpose. The model was trained using data generated from 4-qubit random circuits of depths ranging from 1 to 18, simulated using Qiskit's simulated backends to obtain both ideal and noise-affected measurement data. The training process employed Kullback-Leibler divergence (KLD) as the loss function and the Adam optimizer for 500 epochs, resulting in an average error suppression of 95% across the validation dataset without signs of overfitting.
    To evaluate its robustness across different quantum states and algorithms, the model was tested on a broad range of circuits, including Grover's algorithm, the Quantum Fourier Transform, Haar-random circuits, and the Trivial Paramagnet. The results demonstrated consistent and effective denoising of noisy measurement data, indicating that the autoencoder is a promising tool for error mitigation in noisy intermediate-scale quantum (NISQ) devices. Furthermore, owing to different noise characterizations on real quantum machines, the pretrained model was fine-tuned using a small dataset generated by the \texttt{Sherbrooke} backend from IBM Quantum (IBMQ), showing encouraging results and adaptability. This work contributes to the development of practical, learning-based quantum error mitigation techniques.
    Reference: [1] Richard P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21(6):467–488, Jun 1982.
    [2] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, August 2018.
    [3] Suguru Endo, Zhenyu Cai, Simon C. Benjamin, and Xiao Yuan. Hybrid quantum-classical algorithms and quantum error mitigation. Journal of the Physical Society of Japan, 90(3):032001, 2021.
    [4] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow, and Jay M. Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549(7671):242–246, Sep 2017.
    [5] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. Quantum circuit learning. Phys. Rev. A, 98:032309, Sep 2018.
    [6] Piotr Czarnik, Andrew Arrasmith, Patrick J. Coles, and Lukasz Cincio. Error mitigation with Clifford quantum-circuit data. Quantum, 5:592, November 2021.
    [7] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.
    [8] Ryan LaRose, Andrea Mari, Sarah Kaiser, Peter J. Karalekas, Andre A. Alves, Piotr Czarnik, Mohamed El Mandouh, Max H. Gordon, Yousef Hindy, Aaron Robertson, Purva Thakre, Misty Wahl, Danny Samuel, Rahul Mistri, Maxime Tremblay, Nick Gardner, Nathaniel T. Stemen, Nathan Shammah, and William J. Zeng. Mitiq: A software package for error mitigation on noisy quantum computers. Quantum, 6:774, August 2022.
    [9] Armands Strikis, Dayue Qin, Yanzhu Chen, Simon C Benjamin, and Ying Li. Learning-based quantum error mitigation. PRX Quantum, 2(4):040330, 2021.
    [10] Jihye Kim, Byungdu Oh, Yonuk Chong, Euyheon Hwang, and Daniel K Park. Quantum readout error mitigation via deep learning. New Journal of Physics, 24(7):073009, jul 2022.
    [11] Zhenyu Cai, Ryan Babbush, Simon C. Benjamin, Suguru Endo, William J. Huggins, Ying Li, Jarrod R. McClean, and Thomas E. O’Brien. Quantum error mitigation. Rev. Mod. Phys., 95:045005, Dec 2023.
    [12] Haoran Liao, Derek S. Wang, Iskandar Sitdikov, Ciro Salcedo, Alireza Seif, and Zlatko K. Minev. Machine learning for practical quantum error mitigation. Nature Machine Intelligence, 6(12):1478–1486, Dec 2024.
    [13] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. Extracting and composing robust features with denoising autoencoders. Proceedings of the 25th International Conference on Machine Learning, pages 1096–1103, 2008.
    [14] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 11:3371–3408, 2010.
    [15] G. Jaiswal, R. Rani, H. Mangotra, and A. Sharma. Integration of hyperspectral imaging and autoencoders: Benefits, applications, hyperparameter tuning and challenges. In Proceedings of an International Conference, 2023.
    [16] L. Gondara. Medical image denoising using convolutional denoising autoencoders. IEEE 16th International Conference on Data Mining Workshops, pages 241–246, 2016.
    [17] Y. Zhang. A better autoencoder for image: Convolutional autoencoder. In Proceedings of the International Conference on Image Processing, 2018.
    [18] Xiao-Dao Lin, Hsi-Ming Chang, Jhih-Shih You, and Hsiu-Chuan Hsu. Quantum error mitigation via autoencoder neural networks. In Proceedings of the IEEE International Conference on Quantum Control, Computing and Learning (IEEE qCCL2025), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, June 2025. IEEE. To appear; Not yet published as of August 25, 2025.
    [19] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5:115–133, 1943.
    [20] Donald Olding Hebb. The organization of behavior: A neuropsychological theory. Psychology press, 2005.
    [21] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6):386, 1958.
    [22] Marvin Minsky and Seymour A Papert. Perceptrons, reissue of the 1988 expanded edition with a new foreword by Léon Bottou: an introduction to computational geometry. MIT press, 2017.
    [23] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-propagating errors. nature, 323(6088):533–536, 1986.
    [24] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.deeplearningbook.org.
    [25] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning. arXiv preprint arXiv:1603.07285, 2016.
    [26] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. Deconvolutional networks. In 2010 IEEE Computer Society Conference on computer vision and pattern recognition, pages 2528–2535. IEEE, 2010.
    [27] Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully convolutional networks for semantic segmentation. IEEE transactions on pattern analysis and machine intelligence, 39(4):640–651, 2016.
    [28] Francesco Mezzadri. How to generate random matrices from the classical compact groups. Notices of the American Mathematical Society, 54(5):592–604, 2007.
    [29] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning research, 9(Nov):2579–2605, 2008.
    [30] Xiao-Dao Lin. ae-qem: Autoencoder-based quantum error mitigation sdk. https: //github.com/Y-Frieren-Y/ae-qem, 2025. Version v0.1.0, commit 4531147; License: MIT.
    [31] Qiskit Contributors. Qiskit: Fake lima backend properties (props_lima.json). https://github.com/Qiskit/qiskit/blob/0.45.3/qiskit/providers/fake_provider/backends/lima/props_lima.json, 2024. Accessed: 2025-07-05.
    Description: 碩士
    國立政治大學
    應用物理研究所
    112755009
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112755009
    Data Type: thesis
    Appears in Collections:[應用物理研究所 ] 學位論文

    Files in This Item:

    File SizeFormat
    500901.pdf4077KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback