English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118786/149850 (79%)
Visitors : 81697386      Online Users : 2667
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/160073


    Title: 建構引導式對話功能於大語言模型上的房地產資訊系統
    Construct a Guided Dialogue Function on Large Language Model for Real Estate Information System
    Authors: 何世堯
    Ho, Shih-Yao
    Contributors: 胡毓忠
    Hu, Yuh-Jong
    何世堯
    Ho, Shih-Yao
    Keywords: 引導式對話
    大型語言模型
    槽位填充
    檢索增強生成
    AWS Bedrock
    Guided dialogue
    Large Language Models
    Slot filling
    Retrieval-Augmented Generation
    AWS Bedrock
    Date: 2025
    Issue Date: 2025-11-03 14:45:17 (UTC+8)
    Abstract: 本研究探討在房地產資訊系統中,結合大型語言模型(Large Language Model, LLM)與引導式對話是否能有效降低使用者的認知負擔,並提升需求澄清與推薦的精準度。研究以 Conversation Routines 為提示設計框架,在AWS Bedrock 建置一套分工式架構:由 Bedrock Agent 依 Conversation Routines 規範與槽位填充機制主導互動流程,完成地區、預算、生活機能與其他條件的蒐集;其後透過 RAG 與外部即時搜尋整合知識,並交由 Foundation Model 統整產生推薦結果與可解釋文字。本研究設計六個真實購屋任務情境(明確 ×3、模糊 ×3),在互動式資訊檢索(Interactive Information Retrieval, IIR)觀點下,與產業代表系統「永慶 AI 特助」進行比較;指標包含結果符合度、互動輪數與需求澄清能力。結果顯示:在明確需求情境下,兩系統皆能於單輪內產出可用結果;在模糊需求情境下,本研究系統能透過多輪追問收斂條件,維持推薦品質,並於「完全模糊」情境中仍提供具體建議與物件,而比較系統則無法回應。雖然本系統在模糊情境下通常需要較多互動輪數,但換得較高的需求釐清與建議品質。綜合而言,本研究驗證了引導式對話於高度動態之房地產場域的可行性與實用性,並提供一套可複用的對話設計準則與系統化實作流程。
    This study investigates whether integrating Large Language Models (LLMs) with guided dialogue in real estate information systems can effectively reduce users’cognitive load and improve requirement clarification and recommendation accuracy. The research adopts Conversation Routines as the prompt design framework and builds a modular architecture on AWS Bedrock: the Bedrock Agent, guided by Conversation Routines and a slot-filling mechanism, manages the interaction process to collect region, budget, amenities, and other conditions. Subsequently, knowledge is integrated through Retrieval-Augmented Generation (RAG) with AWS OpenSearch Service and real-time external search via the Perplexity API, with the results consolidated by the Foundation Model (Claude 3.7 Sonnet) into recommendations and explanatory text. Six real-world housing purchase scenarios (three clear, three ambiguous) were designed and compared with an industry benchmark system, “Yung-Ching AI Assistant,”under the perspective of Interactive Information Retrieval (IIR). Evaluation indicators included result relevance, number of dialogue turns, and requirement clarification ability. The results show that in clear-demand scenarios, both systems can generate usable results within a single turn; in ambiguous-demand scenarios, our system refines conditions through multiple prompts, maintaining recommendation quality, and even in “completely ambiguous”cases it can still provide concrete suggestions and listings, whereas the comparison system could not respond. Although our system typically requires more dialogue turns in ambiguous scenarios, it yields superior requirement clarification and recommendation quality. Overall, this study validates the feasibility and practicality of guided dialogue in the dynamic real estate domain and provides a reusable set of dialogue design guidelines and a systematic implementation framework.
    Reference: [1] 劉婷慧. 房屋交易應用程式與使用者經驗研究. 世新大學碩士論文 (2018).
    [2] Romal Thoppilan, Daniel De Freitas, Jamie Hall, et al. LaMDA: Language Models for Dialog Applications. arXiv preprint arXiv:2201.08239 (2022).
    [3] OpenAI. GPT-4 Technical Report. arXiv (2023).
    [4] Anthropic. Claude 1 and 2 Product Overview. Anthropic Technical Report(2025).
    [5] Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. Attention is All You Need. Advances in Neural Information Processing Systems (2017).
    [6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805 (2018).
    [7] Tom B. Brown, Benjamin Mann, Nick Ryder, et al. Language Models are Few-Shot Learners. Advances in Neural Information Processing Systems (2020).
    [8] Patrick Lewis, Ethan Perez, Alex Piktus, et al. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. arXiv preprint arXiv:2005.11401 (2020).
    [9] Daniel Jurafsky and James H. Martin. Speech and Language Processing (3rd Edition). Draft Manuscript (2023).
    [10] Stefan Larson, Kevin Leach, Jonathan Kim, et al. An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction. EMNLP-IJCNLP (2019).
    [11] Yu Zhao and Haoxiang Gao. Utilizing Large Language Models for Information Extraction from Real Estate Transactions. arXiv preprint arXiv:2404.18043 (2024).
    [12] Giorgio Robino. Conversation Routines: A Prompt Engineering Framework for Task-Oriented Dialog Systems. arXiv preprint arXiv:2403.17809 (2024).
    [13] Kyle Blocksom, John Baker, Sudip Dutta, Maira Ladeira Tanke, and Mark Roy. Getting Started with Amazon Bedrock Agents Custom Orchestrator. Amazon Bedrock Agents Blog (2024).
    [14] Amazon Web Services. Anthropic’s Claude 3.7 Sonnet: The First Hybrid Reasoning Model is Now Available in Amazon Bedrock. AWS Blog (2025).
    [15] Stefan Larson and Kevin Leach. A Survey of Intent Classification and Slot-Filling Datasets for Task-Oriented Dialog. arXiv preprint arXiv:2207.13211 (2022).
    [16] OpenSearch Project. k-NN plugin for OpenSearch: Vector search techniques. OpenSearch Documentation (2023).
    [17] Mohammad Mujaheed Hassan, Nobaya Ahmad, and Ahmad Hariza Hashim. Factors Influencing Housing Purchase Decision. International Journal of Academic Research in Business and Social Sciences (2021).
    [18] Lizawati Abdullah, Ilyana Bazlin Mohd Nor, Norhaslina Jumadi, and Huraizah Arshad. First-Time Home Buyers: Factors Influencing Decision Making. International Conference on Innovation and Technology for Sustainable Built Environment (ICITSBE 2012) (2012).
    [19] 吳聲煌. 影響購屋意願因素之研究. 國立政治大學碩士論文 (2020).
    [20] Diane Kelly. Methods for Evaluating Interactive Information Retrieval Systems with Users. Foundations and Trends in Information Retrieval (2009).
    [21] 永慶房屋. 永慶 AI 特助. 永慶房屋官方網站 (2025).
    Description: 碩士
    國立政治大學
    資訊科學系碩士在職專班
    109971020
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109971020
    Data Type: thesis
    Appears in Collections:[資訊科學系碩士在職專班] 學位論文

    Files in This Item:

    File SizeFormat
    102001.pdf18880KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback