English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 94986/125531 (76%)
Visitors : 30979591      Online Users : 470
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 期刊論文 >  Item 140.119/18226
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/18226

    Title: Analysis of Switching Dynamics with Competing Support Vector Machine
    Authors: 張洺偉;林智仁;翁久幸
    Chang, Ming-Wei;Lin, Chih-Jen;Weng, Ruby C.
    Date: 2004-05
    Issue Date: 2008-12-19 14:56:55 (UTC+8)
    Abstract: We present a framework for the unsupervised segmentation
    of switching dynamics using support vector machines.
    Following the architecture by Pawelzik et al., where annealed competing
    neural networks were used to segment a nonstationary time
    series, in this paper, we exploit the use of support vector machines,
    a well-known learning technique. First, a new formulation of support
    vector regression is proposed. Second, an expectation-maximization
    step is suggested to adaptively adjust the annealing parameter.
    Results indicate that the proposed approach is promising.
    Relation: IEEE Transactions on Neural Networks 15(3),720-727
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1109/IJCNN.2002.1007515
    DOI: 10.1109/IJCNN.2002.1007515
    Appears in Collections:[統計學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    720727.pdf666KbAdobe PDF865View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback