| Reference: | Aslanidou, H., Dey, D.K. and Sinha, D. (1998). Bayesian analysis of multivariate survival data using Monte Carlo methods. Canadian Journal of Statistics, 26, 33-48. Banerjee, S, Carlin, B.P. and Gelfand, A.E. (2004). Hierarchical Modeling and Analysis for Spatial Data. Boca Raton: Chapman and Hall/CRC. Banerjee, S., Wall, M. and Carlin, B.P. (2003). Frailty modelling for spatially correlated survival data with application to infant mortality in Minnesota. Biostatistics, 4, 123–142. Banerjee, S. and Dey, D.K. (2005). Semiparametric proportional odds model for spatially correlated survival data. Lifetime Data Analysis, 11, 175–191. Besag, J. (1974). Spatial Interaction and the Statistical Analysis of Lattice Systems (with Discussion). Journal of the Royal Statistical Society, Ser. B, 36, 192–236. Bennett, S. (1983). Analysis of survival data by the proportional odds model. Statistics in Medicine, 2, 273–277. Brook, D. (1964). On the distinction between the conditional probability and the joint probability approaches in the specification of nearest-neighbour systems. Biometrika, 51(3-4), 481-483 Carlin, B.P. and Banerjee, S. (2003). Hierarchical multivariate car models for spatio-temporally correlated survival data. Bayesian Statistics, 7, 45–64. Celeux, G., Forbes, F., Robert, C.P. and Titterington, D.M. (2006). Deviance information criteria for missing data models (with discussion). Bayesian Analysis, 1, 651–706. Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65,141–151. Cox, D.R. (1972). Regression models with life tables. Journal of the Royal Statistical Society, 34, 187–220. Diva, U.A., Banerjee, S. and Dey, D.K. (2007). Modeling spatially correlated survival data for individuals with multiple cancers. Statistical Modeling, 7(2), 1–23. Diva, U.A., Dey, D.K. and Banerjee, S. (2008). Parametric models for spatially correlated survival data for individuals with multiple cancers. Statistics in Medicine, 27, 2127–2144. Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Annals of Statistics, 1, 209–230. Gelfand, A.E. and Vounatsou, P. (2002). Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics, 4, 11–25. Gilks, W.R. and Wild, P. (1992). Adaptive Rejection Sampling for Gibbs Sampling. Applied Statistics, 41(2), 337-348 Geisser, S. and Eddy, W.F. (1979). A predictive approach to model selection. Journal of the American Statistical Association, 74, 153-160. Hammersley, J.M. and Clifford, P. (1971). Markov fields on finite graphs and lattices. Unpublished. Kelderman, H. (1984). Loglinear Rasch model tests. Psychometrika, 49, 223–45. Kraft, C.H. (1964). A Class of Distribution Function Processes Which Have Derivatives. Journal of Applied Probability, 1, 385-388 Han, C. and Carlin, B.P. (2001). Markov chain Monte Carlo methods for computing Bayes factors: a comparative review. Journal of the American Statistical Association, 96, 1122-1132. Hanson, T. and Johnson, W.O. (2002). Modeling regression error with a mixture of Polya trees. Journal of the American Statistical Association, 97, 1020–1033. Hanson, T. (2006). Inference for mixtures of finite Polya tree models. Journal of the American Statistical Association, 101, 1548-1565. Hanson, T. and Yang, M. (2007). Bayesian semiparametric proportional odds models. Biometrics, 63, 88-95. Heinävaara, S. (2003). Modelling survival of patients with multiple cancers. Ph.D. Thesis, University of Helsinki, Statistical Research Reports, No. 18. The Finnish Statistical Society. Held, L. and Best, N.G. (2001). A shared component model for detecting joint and selective clustering of two diseases. Journal of the Royal Statistical Society, Series A, 164, 73–85. Held, L., Natario, I., Fenton, S., Rue, H. and Becker, N. (2005). Towards joint disease mapping. Statistical Methods in Medical Research, 14, 61–82. Ibrahim, J.G., Chen, M.H. and Sinha, D. (2001). Bayesian Survival Analysis, New York: Springer-Verlag. Jin, X. and Carlin, B.P. (2005). Multivariate parametric spatio-temporal models for county level breast cancer survival data. Lifetime Data Analysis, 11, 5-27. Jin, X., Carlin, B.P. and Banerjee, S. (2005). Generalized hierarchical multivariate car models for areal data. Biometrics, 61, 950–961. Lam, K. F., Lee, Y. W., and Leung, T. L. (2002). Modeling multivariate survival data by a semiparametric random effects proportional odds model. Biometrics, 58, 316–323. Lavine, M. (1992). Some aspects of Polya tree distributions for statistical modeling. Annals of Statistics, 20, 1222–1235. Lichstein, J.W., Simons, T.R., Shriner, S.A. and Franzreb. K.E. (2002). Spatial autocorrelation and autoregressive models in ecology. Ecological Monographs, 72(3), 445–463. Mallick, B.K. and Walker, S.G. (2003). A Bayesian semiparametric transformation model incorporating frailties. Journal of Statistical Planning and Inference, 112, 159-174. Mardia, K. V. (1988). Multi-Dimensional Multivariate Gaussian Markov Random Fields with Application to Image Processing. Journal of Multivariate Analysis, 24, 265–284. Murphy, S. A., Rossini, A. J., and van der Vaart, A. W. (1997). Maximum likelihood estimation in the proportional odds model. Journal of the American Statistical Association, 92, 968–976. National Cancer Institute (NCI). Cancer Facts: Cancer Clusters, Fact Sheet. http://cancertrials.nci.nih.gov/images/Documents/ Ries, L.A.G., Eisner, M.P., Kosary, C.L., Hankey, B.F., Miller, B.A., Clegg, L., Mariotto, A., Feuer, E.J. and Edwards, B.K. (eds). SEER Cancer Statistics Review, 1975–2002, National Cancer Institute, Bethesda, MD. Available from: http://seer.cancer.gov/csr/1975 2002/, based on November 2004 SEER data submission, posted to the SEER Web site 2005 Sahu, S. K., Dey, D. K., Aslanidou, H., and Sinha, D. (1997). A Weibull regression model with gamma frailties for multivariate survival data. Lifetime Data Analysis, 3, 123–137. Sinha, D. and Dey, D. K. (1997). Semiparametric Bayesian analysis of survival data. Journal of the American Statistical Association, 92, 1195–1212. Spiegelhalter, D.J., Best, N., Carlin, B.P., and van der Linde, (2002). A. Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B, 64, 583-639. Sun, D., Tsutakawa, R.K., Kim, H., and Zhuoqiong, H. (2000). Spatio-temporal interaction with disease mapping. Statistics in Medicine, 19, 2015-2035. Sundaram, S. (2006). Semiparametric inference in proportional odds model with time-dependent covariates. Journal of Statistical Planning and Inference, 136, 320–334. Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat Database: Incidence—SEER 11 Regs + AK Public-use, November 2005 Sub (1973–2005 varying). National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch, released April 2004, based on the November 2007 submission Walker, S.G. and Mallick, B.K. (1997). Hierarchical generalized linear models and frailty models with Bayesian nonparametric mixing. Journal of the Royal Statistical Society, Series B, 59, 845-860. Walker, S.G. and Mallick, B.K. (1999). Semiparametric accelerated life time model. Biometrics, 55, 477-483. Yang, S. and Prentice, R.L. (1999). Semiparametric inference in the proportional odds regression model. Journal of the American Statistical Association, 94, 125–136. Zhao, L., Hanson, T., and Carlin, B.P. (2009). Mixtures of Polya trees for flexible spatial frailty survival modeling. Biometrika, 96(2), 263–276 Zucker, D.M. and Yang, S. (2005). Inference for a family of survival models encompassing the proportional hazards and proportional odds model. Statistics in Medicine, 25, 995–1014. |