English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 96163/126772 (76%)
Visitors : 32224776      Online Users : 342
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/31242
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/31242


    Title: 利率衍生性商品之定價與避險:LIBOR 市場模型
    Pricing and Hedging Interest Rate Options in a LIBOR Market Model
    Authors: 吳庭斌
    wu,Ting-Pin
    Contributors: 陳松男
    Chen,Son-Nan
    吳庭斌
    wu,Ting-Pin
    Keywords: LIBOR 市場模型
    利率衍生性商品
    股籌交換
    LIBOR Market Model
    Interest Rate Derivatives
    Equity Swaps
    Date: 2006
    Issue Date: 2009-09-14 09:35:41 (UTC+8)
    Abstract: 本論文第一章將 LIBOR 市場模型加入股價動態,並求出其風險中立過程下的動態模型,並利用此模型評價股籌交換契約。第二章將 LIBOR 市場模型擴展成兩國的市場模型,加入兩國股價動態,並求出風險中立過程下的動態模型,並利用此模型評價跨國股籌交換契約。本論文第二部份說明如何實際使用此模型,並使用蒙地卡羅模擬檢驗此評價模型的正確性。
    This thesis includes two main chapters. Chapter 2 is entiled as "Equity Swaps in a LIBOR Market Model" and Chapter 3 is entitled as "Cross-Currency Equity Swaps in a LIBOR Market in a Model". The conclusions of this thesis are made in Chapter 4.

    In Chapter 2, we extends the BGM (Brace, Gatarek and Musiela (1997))interest rate model (the LIBOR market model) by incorporating the stock price dynamics under the martingale measure. As compared with traditional interest rate models, the extended BGM model is easy to calibrate the model parameters and appropriate for pricing equity
    swaps. The general framework for pricing equity swaps is proposed and applied to the pricing of floating-for-equity swaps with either constant or variable notional principals. The calibration procedure and the practical implementation are also discussed.

    In Chapter 3, under the arbitrage-free framework of HJM, we
    simultaneously extends the BGM model (the LIBOR market model) from a single-currency economy to a cross-currency case and incorporates the stock price dynamics under the martingale measure. The resulting model is very general for pricing almost every kind of (cross-currency) equity swaps traded in OTC markets. The calibration procedure and the hedging strategies are also provided in this paper for practical operation. The pricing formulas of the equity swaps with either a constant or a variable notional principal and with hedged or un-hedged exchange rate risk are derived and discussed as examples.
    Reference: Amin, K. I., Jarrow, R. (1991). Pricing foreign currency
    options under stochastic interest rates.
    \textit{Journal of International Money and Finance}, 10, 310-329.\\
    Black, F. (1976). The pricing of commodity contracts. \textit{Journal of
    Financial Economics}, 3, 167-179.\\
    Black, F., Scholes, M. (1973). The pricing of options and
    corporate liabilities. \textit{Journal of Political Economy}, 81, 637-654.\\
    Brace, A., Dun, T.A., Barton, G. (1998). Towards a central
    interest rate model. Paper presented at the \textit{Conference Global Derivatives'98}.\\
    Brace, A., Gatarek, D., Musiela, M. (1997). The market model of interest rate dynamics. \textit{Mathematical Finance}, 7, 127-155.\\
    Brace, A., Womersley, R.S. (2000). Exact fit to the swaption volatility matrix using semidefinite programming. Paper presented at the \textit{ICBI Global Derivatives Conference}.\\
    Brigo, D., Mercurio, F. (2001). \textit{Interest Rate Models: Theory
    and Practice}. New York: Springer-Verlag.\\
    Chance, D. M., Rich, D. (1998). The pricing of equity swaps and swaptions. \textit{Journal of Derivatives}, 5, 19-31.\\
    Chang, C. C., Chung, S. L., Yu, M. T. (2002). Valuation and hedging
    of differential swaps. \textit{Journal of Futures Markets}, 22,
    73-94.\\
    Harrison, J. M., Kreps, D. M. (1979). Martingales and arbitrage in multiperiod security markets. \textit{Journal of Economic Theory}, 20, 381-408.\\
    Harrison, J. M., S. Pliska (1981). Martingales and stochastic
    integrals in the theory of continuous trading. \textit{Stochastic Processes and Their Applications}, 11, 215-260.\\
    Harrison, J. M., S. Pliska (1983). A stochastic calculus model of
    continuous trading: complete markets, \textit{Stochastic Proc. and
    Applications}, 15, 313-316.\\
    Heath, D., Jarrow, R. Morton A. (1992). Bond pricing and the term
    structure of interest rates: A new methodology for contingent claim
    valuations. \textit{Econometrica}, 60, 77-105.\\
    Hull, J. (2003). \textit{Options, Futures and Other Derivatives.}
    5rd ed. New Jersey: Prentice-Hall.\\
    Jamshidian, F. (1997). LIBOR and swap market models and measures.
    \textit{Finance and Stochastic}, 1, 293-330.\\
    Jarrow, R., Turnbull, S. (1996). \textit{Derivative Securities}. Cincinnati: South Western.\\
    Kijima, M., Muromachi, Y. (2001). Pricing equity swaps in a stochastic interest rate economy. \textit{Journal of Derivatives}, 8, 19-35.\\
    Marshall, J., Sorensen, E., Tuncker, A. (1992). Equity derivatives:
    The plain vanilla equity swap and its variants.
    \textit{Journal of Financial Engineering}, 1, 219-241.\\
    Miltersen, K.R., Sandmann, K., Sondermann, D. (1997). Closed form
    solutions for term structure derivatives with log-normal interest
    rates. \textit{The Journal of Finance}, 52, 409-430.\\
    Musiela, M., Rutkowski, M. (1997). Continuous-time term structure
    model: forward measure approach. \textit{Finance and Stochastics},
    4,
    261-292.\\
    Rebonato, R. (1999). On the simultaneous calibration of multifactor
    lognormal interest rate models to Black volatilities and to the
    correlation matrix. \textit{Journal of Computational Finance}, 2 (4), 5-27.\\
    Rich, D. (1995). Note on the valuation and hedging of equity swaps. \textit{Journal of Financial Engineering}, 3, 323-334.\\
    Rogers, C. (1996). Gaussian errors. \textit{Risk}, 9, 42-45.\\
    Schlogl, E. (2002). A multicurrency extension of the lognormal
    interest rate market models. \textit{Finance and Stochastics}, 6, 173-196.\\
    Shreve, S. E. (2004). \textit{Stochastic Calculus for Finance II: Continuous-Time Models}. New York: Springer-Verlag.\\
    Wang, M. C. Liao, S. L. (2003). Pricing models of equity swaps.
    \textit{Journal of Futures Markets}, 23, 751-772.
    Description: 博士
    國立政治大學
    金融研究所
    92352501
    95
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0923525011
    Data Type: thesis
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML170View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback