English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 110934/141859 (78%)
Visitors : 47674036      Online Users : 970
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 心理學系 > 學位論文 >  Item 140.119/32484
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/32484


    Title: 探討預期性對比效果之神經機制
    Investigation of the neural mechanisms of anticipatory contrast effect
    Authors: 林緯倫
    Lin, Wea Lun
    Contributors: 廖瑞銘
    林緯倫
    Lin, Wea Lun
    Keywords: 預期性對比效果
    延宕折扣
    依核核心區
    眶前額皮質區
    杏仁體基側核區
    anticipatory contrast effect
    delay discounting
    nucleus accumbens core
    orbitofrontal cortex
    basolateral amygdala
    Date: 2007
    Issue Date: 2009-09-17 13:13:53 (UTC+8)
    Abstract: 很多行為的建構基礎是來自酬賞動機,而個體的行為表現通常是動態的歷程,其中對酬賞物的“價值”比較,是決定行為是否輸出或輸出多少的重要關鍵。在鼠類的動物行為模式中,可以利用甜液舔飲來進行這種對比(contrast)歷程的實驗。在受試可先後獲得兩次舔飲機會的實驗情境中,若兩管濃度皆為4%的蔗糖液先後間隔特定時距出現,受試會隨訓練天數增加而增加對兩管糖液的舔飲表現。若第一管4%蔗糖液之後會呈現濃度較高的32%蔗糖液,受試舔飲第一管同為濃度4%蔗糖液的表現會隨訓練天數增加而先增後減。這兩組受試對第一管糖液的舔飲量差異,即稱為預期性對比效果。一般認為此現象是受試等待與預期較高酬賞價值的糖液,而抑制當前較低酬賞價值糖液的舔飲。過去對此現象的研究主要關注在行為層面的探討,然而其相關神經機制的研究並不多,本研究的目的即在於探討與習得或形成預期性對比行為有關的神經機制。一般認為預期性對比效果的習得包含多階段的歷程,可能與多種心理行為面向有關,因此很有可能是經由多元性的神經機制參與。預期性對比效果的形成與否與兩糖液呈現的間距長短有很大的關係。本研究實驗一以0.5分鐘、2分鐘以及6分鐘三個不同的糖液間距引發的預期對比效果,從當中選取可有效形成預期性對比效果的0.5分鐘為實驗二糖液間距的依據。實驗二分別以興奮性神經毒素破壞依核核心區、眶前額皮質區以及杏仁體基側核區等三個神經區域。結果顯示杏仁核基側核區破壞不影響預期性對比效果的習得,而依核核心區以及眶前額皮質的破壞使受試無法習得預期性對比效果。綜合以上結果,預期性對比效果的習得是依靠有效的糖液呈現間距去進行酬賞比較,腦中依核核心區及眶前額皮質區與該種對比有關。
    Many types of behavior are constructed on the basis of reward motivation, which can be run in dynamic processes. Among those processes potentially involved, the reward comparison is a key determinant for the magnitude of behavioral output. The licking of sweet solution in the rat can be used as an animal model to investigate the contrast effect derived from reward comparison. In which, the subjects presented two sweet solutions in a sequential order each day may suppress intake of the first solution if the second solution is preferred. This phenomenon is termed anticipatory contrast effect (ACE). It is hypothesized that ACE could be built via an inhibition process associated with subject’s waiting for a preferred solution as presented by a less preferred solution. Most of the previous studies were mainly focused on the behavioral aspects of ACE. The present study intended to investigate the neural mechanisms of ACE. In considering that the formation of ACE requires multiple-stage processes, this study presumed that more than one brain area could be involved in mediating those psycho-behavioral processes. Experiment 1 was intended to establish behavioral model by manipulating the effectiveness of different inter-solution interval (ISI; 0.5, 2.0, and 6.0 min). The results showed that the ISI of 0.5 min is the critical parameters for the successful formation of ACE, which was then applied in Experiment 2. Experiment 2 investigated the effects of excitotoxin lesion conducted by ibotenic acid in the nucleus accumbens core (NACc), orbitofrontal cortex (OFC) or basolateral amygdala (BLA) on the acquisition of ACE. The result showed the rats with NACc or OFC lesion significantly failed to acquire ACE, but no such impairment appeared to BLA lesion. Together, these data suggest that the formation of ACE is depended upon the ISI leading to an effective reward comparison, and the NACc or OFC is involved in such a contrast processing.
    Reference: Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275, 1293-1295.
    Bjork, J. M., Knutson, B., Fong, G. W., Caggiano, D. M., Bennett, S. M., & Hommer, D. W. (2004). Incentive-elicited brain activation in adolescents: Similarities and differences from young adults. Journal of Neuroscience,24, 1793-1802.
    Bohn, I., Giertler, C., & Haubert, W. (2003). Orbital prefrontal cortex and guidance of instrumental behaviour in rats under reversal conditions. Behavioural Brain Research 143, 49-56.
    Cardinal, R. N. (2006). Neural systems implicated in delayed and probabilistic reinforcement. Neural Networks, 19, 1277-1301.
    Cardinal, R. N., & Howes, N. J. (2005). Effects of lesions of the nucleus accumbens core on choice between small certain rewards and large uncertain rewards in rats. BMC Neuroscience, 6, 37.
    Cardinal, R. N., Pennicott, D. R., Sugathapala, C. L., Robbins, T. W., & Everitt, B. J. (2001). Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science, 292, 2499-2501.
    Cromwell, H. C., & Schultz, W. (2003). Effects of expectations for different reward magnitudes on neuronal activity in primate striatum. Journal of Neurophysiology, 89, 2823-2838.
    Flaherty, C. F. (1982). Incentive contrast: A review of behavioral changes following shift in reward. Animal Learning & Behavior, 10, 409-440.
    Flaherty, C. F. (1996). Incentive relativity. Cambridge, England: Cambridge University Press.
    Flaherty, C. F., & Checke, S. (1982). Anticipation of incentive gain. Animal Learning & Behavior, 10, 177-182.
    Flaherty, C. F., Coppotelli, C., Grigson, P. S., Mitchell, C., & Flaherty, J. E. (1995). Investigation of the devaluation interpretation of anticipatory negative contrast. Journal of Experimental Psychology: Animal Behavior Processes, 21, 229-247.
    Flaherty, C. F., Grigson, P. S., Checke, S., & Hnat, K. C. (1991). Deprivation state and temporal horizons in anticipatory contrast. Journal of Experimental Psychology: Animal Behavior Processes, 17, 503-518.
    Flaherty, C. F., Grigson, P. S., Coppotelli, C., & Mitchell, C. (1996). Anticipatory contrast as a function of access time and spatial location of saccharin and sucrose solutions. Animal Learning & Behavior, 24, 68-81.
    Flaherty, C. F., Grigson, P. S., & Lind, S. (1990). Chlordiazepoxide and the moderation of the initial response to reward reduction. The Quarterly Journal of Experimental Psychology, 42B, 87-105.
    Flaherty, C. F., & Rowan, G. A. (1985). Anticipatory contrast: within-subjects analysis. Animal Learning & Behavior, 13, 2-5.
    Flaherty, C. F., & Rowan, G. A. (1986). Successive, simultaneous, and anticipatory contrast in the consumption of saccharin solutions. Journal of Experimental Psychology: Animal Behavior Processes, 12, 381-393.
    Flaherty, C. F., & Rowan, G. A. (1988). Effect of intersolution interval, chlordiazepoxide and amphetamine on anticipatory contrast. Animal Learning & Behavior, 16, 47-52.
    Flaherty, C. F., Rowan, G. A., Emerich, D., & Walsh, T. (1989). Effects of intra-hippocampal administration of colchicines on incentive contrast and on radial maze performance. Behavioral Neuroscience, 103, 319-328.
    Flaherty, C. F., Turovsky, J., & Krauss, K. L. (1994). Relative hedonic value modulates anticipatory contrast. Physiology & Behavior, 55, 1047-1054.
    Gallagher, M., McMahan, R.W., and Schoenbaum, G. (1999). Orbitofrontal cortex and representation of incentive value in associative learning. Journal of Neuroscience, 19, 6610-6614.
    Gilbert, P. E., & Kesner, R. P. (2002). The amygdala but not the hippocampus is involved in pattern separation based on reward value. Neurobiology of Learning and Memory, 77, 338-353.
    Grigson, P. S. (1997). Conditioned Taste Aversions and Drugs of Abuse: A Reinterpretation. Behavioral Neuroscience, 111, 129-136.
    Grigson, P. S. (2000). Drug of abuse and reward comparison: a brief review. Appetite, 35, 89-91.
    Grigson, P. S. (2002). Like drugs for chocolate: Separate rewards modulated by common mechanisms?. Physiology & Behavior, 76, 389-395.
    Hikosaka, K., & Watanabe, M. (2000). Delay activity of orbito and lateral prefrontal neurons of monkey varying with different rewards. Cerebral Cortex, 10, 263-271.
    Ho, M. Y., Mobini, S., Chiang, T. J., Bradshaw, C. M., & Szabadi, E. (1999). Theory and method in the quantitative analysis of “impulsive choice” behaviour: implications for psychopharmacology. Psychopharmacology, 146, 362-372.
    Holland, P. C., & Gallagher, M. (2004). Amygdala-frontal interactions and reward expectancy. Current Opinion in Neurobiology, 14, 148-155.
    Kesner, R. P., & Gilbert, P. E. (2007). The role of agranular insular cortex in anticipation of reward contrast. Neurobiology of Learning and Memory, 88, 82-86.
    Kheramin, S., Body, S., Ho, M. Y., Velazquez-Martinez, D. N., Bradshaw, C. M., Szabadi, E., Deakin, J. F. W., & Anderson, I. M. (2003). Role of the orbital prefrontal cortex in choice between delayed and uncertain reinforcers: a quantitative analysis. Behavioural Processes, 64, 239-250.
    Leszczuk, M. H., & Flaherty, C. F. (2000). Lesions of nucleus accumbens reduce instrumental but not consummatory negative contrast in rats. Behavioural Brain Research, 116, 61-79.
    Liao, R. M., & Chuang, F. J. (2003). Differential effects of diazepam infused into the amygdala and hippocampus on negative contrast. Pharmacology, Biochemistry & Behavior, 74, 953-960.
    Lucas, G. A., Gawley, D. J., & Timberlake, W. (1988). Anticipatory contrast as a measure of time horizons in the rat: Some methodological determinants. Animal Learning & Behavior, 16, 377-382.
    Lucas, G. A., Timberlake, W., Gawley, D. J., & Drew, J. (1990). Anticipation of future food: Suppression and facilitation of saccharin intake depending on the delay and type of future food. Journal of Experimental Psychology: Animal Behavior Processes, 16, 169-177.
    McDonald, A. J. (1991). Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience, 44, 1-14.
    Mitchell, C., & Flaherty, C. F. (1998). Temporal dynamics of corticosterone elevation in successive negative contrast. Physiology & Behavior, 64, 287-292.
    Miyazaki, K., Mogi, E., Araki, N., & Matsumoto, G. (1998). Reward-quality dependent anticipation in rat nucleus accumbens. Neuroreport, 9, 3943-3948.
    Mobini, S., Body, S., Ho, M. Y., Bradshaw, C. M., Szabadi, E., Deakin, J. F., & Anderson, I. M. (2002). Effects of lesions of the orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology, 160, 290-298.
    Moss, N. D., Clarke, J. C., & Kehoe, E. J. (2002). Paradoxical effects of hedonic disparities in negative anticipatory contrast. Physiology & Behavior, 75, 435-442.
    Ongur, D., & Price, J. L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and himans. Cerebral Cortex, 10, 206-219.
    Papini, M. R. (2003). Comparative psychology of surprising nonreward. Brain, Behavior and Evolution, 62, 83-95.
    Paxinos, G., & Watson, C. (2007). The rat brain in stereotaxic coordinates 6th edition. Australia: Academic Press.
    Pothuizen, H. H., Jongen-Relo, A. L., Feldon, J., & Yee, B. K. (2005). Double dissociation of the effects of selective nucleus accumbens core and shell lesions on impulsive-choice behaviour and salience learning in rats. European Journal of Neuroscience, 22, 2605-2616.
    Ragozzino, M. E., & Kesner, R. P. (1999). The role of the agranular insular cortex in working memory for food reward value and allocentric space in rats. Behavioural Brain Research, 98, 103-112.
    Reilly, S., Bornovalova, M., & Trifunovic, R. (2004). Excitotoxic lesions of the gustatory thalamus spare simultaneous contrast effects but eliminate anticipatory negative contrast: Evidence against a memory deficit. Behavioral Neuroscience, 118, 365-376.
    Reilly, S., & Pritchard, T. C. (1996). Gustatory thalamus lesions in the Rat: II. Aversive and appetitive taste conditioning. Behavioral Neuroscience, 110, 746-759.
    Roesch, M. R., Taylor, A. R., & Schoenbaum, G. (2006). Encoding of time-discounted rewards in orbitofrontal cortex is independent of value representation. Neuron, 51, 509-520.
    Rolls, E. T. (2000). The orbitofrontal cortex and reward. Cerebral Cortex, 10, 284-294.
    Schoenbaum, G., Chiba, A. A., & Gallagher, M. (1998). Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nature Neuroscience, 1, 155-159.
    Schoenbaum, G., Setlow, B., & Ramus, S. J. (2003). A systems approach to orbitofrontal cortex function: recordings in rat orbitofrontal cortex reveal interactions with different learning systems. Behavioural Brain Research, 146, 19-29.
    Schoenbaum, G., Setlow, B., Saddoris, M. P., & Gallagher, M. (2003). Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdale. Neuron, 39, 855-867.
    Schroy, P. L., Wheeler, R. A., Davidson, C., Scalera, G., Twining, R. C., & Grigson, P. S. (2005). Role of gustatory thalamus in anticipation and comparison of rewards over time in rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 288, 966-990.
    Schultz, W., Apicella, P., Scarnati, E., & Ljungberg, T. (1992). Neuronal activity in monkey ventral striatum related to the expectation of reward. The Journal of Neuroscience, 12, 4595-4610.
    Tremblay, L., & Schultz, W. (1999). Relative reward preference in primate Orbitofrontal cortex. Nature, 398, 704-708.
    Winstanley, C. A., Theobald, D. E., Cardinal, R. N., & Robbins, T. W. (2004). Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. Journal of Neuroscience, 24, 4718-4722.
    Description: 碩士
    國立政治大學
    心理學研究所
    93752001
    96
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0093752001
    Data Type: thesis
    Appears in Collections:[心理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    75200101.pdf43KbAdobe PDF2861View/Open
    75200102.pdf67KbAdobe PDF2903View/Open
    75200103.pdf117KbAdobe PDF21014View/Open
    75200104.pdf101KbAdobe PDF21161View/Open
    75200105.pdf221KbAdobe PDF21611View/Open
    75200106.pdf199KbAdobe PDF21086View/Open
    75200107.pdf206KbAdobe PDF21093View/Open
    75200108.pdf214KbAdobe PDF21488View/Open
    75200109.pdf224KbAdobe PDF21334View/Open
    75200110.pdf192KbAdobe PDF2910View/Open
    75200111.pdf3483KbAdobe PDF21198View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback