English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52157653      Online Users : 398
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/32583
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/32583


    Title: 主成分選取與因子選取在費雪區別分析上的探討
    Discussion of the Fisher`s Discriminant Analysis Based on Choices of Principal Components and Factors
    Authors: 李婉菁
    Contributors: 姜志銘
    李婉菁
    Keywords: 主成分
    Principal Component
    Date: 2006
    Issue Date: 2009-09-17 13:47:42 (UTC+8)
    Abstract: 當我們的資料變數很多時,我們通常會使用主成分
    或因子來降低資料變數;
    在選取主成分與因子時,我們通常會以特徵值來做選擇,
    然而變異數大(亦即特徵值大)的主成分或因子雖然解釋了大部分變異,
    但卻不一定保留了最多後續要分析的資訊,
    例如利用由特徵值所選取出來最好的主成分或因子
    來當做區別資料之變數,所得結果不一定理想。
    在此我們假設資料是來自於兩個多維常態母體,
    我們將分別利用由Mardia等人 (1979) 和Chang (1983) 所提出的兩種方法
    來選取出具區別能力的主成分,將其區別結果與由特徵值所選取出最好的主成分
    之區別結果作一比較;並且將此二方法應用在選取因子上。
    同時我們也證明Mardia等人 (1979) 和Chang (1983)的方法對於
    主成分及因子(利用主成分方法轉換)有相同的選取順序。
    本文更進一步地將Mardia等人
    所提出之方法運用至三群資料上,探討當資料來自於三個
    多維常態母體時,我們該如何利用此方法來選取具區別能力之變數。
    Principal component analysis or factor analysis are often used
    to reduce the dimensionality of the original variables.
    However, the principal component or factor, which has
    larger variance (i.e eigenvalue) explaining larger proportion of total sample
    variance, may not retain the most information for other analyses later.
    For example, using the first few principal components or factors
    having the largest corresponding eigenvalues as
    discriminant variables, the discriminant result
    may not be good or even appropriate.

    \\hspace{2.05em}We first discuss two methods, given by Mardia et al. (1979) and Chang (1983)
    for choosing discriminant variables when data are randomly obtained from
    a mixture of two multivariate normal distributions.
    We then use the discriminant result (or classification error rates)
    to compare these two methods and the traditional method of using the
    principal components, which have the larger corresponding eigenvalues,
    as discriminant variables. We also prove that the both the two methods
    have the same selection order on principal components and factor (obtained
    by the principal component method).
    Furthermore, we use the method of
    Mardia et al. to select appropriate discriminators when data is from
    three populations.
    Reference: [1] Mardia K.V., Kent J.T. and Bibby J.M., Multivariate Analysis, Academic
    Press, (1979), 322–324.
    [2] Chang W.C., On using principal components before separating a mixture of two
    multivariate normal distributions, Appl. Statist., 32 (1983), 267–275.
    [3] Jolliffe I.T., Morgan B.J.T. and Young P.J., A simulation study of the use of
    principal components in linear discriminant analysis, J. Stat. Comput. Simul.,
    55 (1996), 353–366.
    [4] Jolliffe I.T., Morgan B.J.T. and Young P.J., A note on using principal components
    in linear discriminant analysis, (1995). Submitted for publication.
    http://citeseer.ist.psu.edu/jolliffe95note.html
    [5] Murry G.D., A cautionary note on selection of variables in discriminant analysis,
    Appl. Statist., 3 (1977), 246–250.
    [6] Namkoon G., Statistical analysis of introgression, Biomtrics, 22 (1966), 488–
    502.
    [7] Wolfe J.H., Computational methods for estimating the parameters of multivariate
    normal mixtures of distribution, U.S. Naval Personnel Research Activity,
    San Diego (1967), SRM 68–2.
    [8] Dillon W.R., Mulani N. and Frederick D.G., On the use of component scores
    in the presence of group structures, J. Consumer Research, 16 (1989), 106–112.
    [9] Kemsley E.K., Discriminant analysis of high-dimensional data: a comparsion
    of principal components analysis and least squares data reduction methods,
    Journal of Statistical Computitation and Simulation, 55 (1996), 353–366.
    [10] Song C.C., Jiang T.J. and Kuo K.L., On the Fisher’s discriminant analysis,
    Technical Report # NCCU 701-05-T04-01, Department of Mathematical Sciences,
    National Chengchi University.
    20
    [11] Jackson J.E., A user’s guide to principal components, Wiley, New York (1991).
    [12] Flury B.D., Developments In Principal Component Analysis, (1995), 14–23.
    [13] Johnson R.A., Wichern D.W., Alllied Multivariate Statistical Analysis, Prentice
    Hall, (2002).
    Description: 碩士
    國立政治大學
    應用數學研究所
    94751001
    95
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0094751001
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    100101.pdf81KbAdobe PDF2793View/Open
    100102.pdf112KbAdobe PDF2857View/Open
    100103.pdf38KbAdobe PDF2851View/Open
    100104.pdf102KbAdobe PDF21070View/Open
    100105.pdf39KbAdobe PDF2839View/Open
    100106.pdf108KbAdobe PDF21390View/Open
    100107.pdf110KbAdobe PDF21084View/Open
    100108.pdf126KbAdobe PDF2995View/Open
    100109.pdf40KbAdobe PDF2861View/Open
    100110.pdf128KbAdobe PDF2938View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback