English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113451/144438 (79%)
Visitors : 51292592      Online Users : 195
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/32662
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/32662


    Title: 中文詞彙集的來源與權重對中文裁判書分類成效的影響
    Exploring the Influences of Lexical Sources and Term Weights on the Classification of Chinese Judgment Documents
    Authors: 鄭人豪
    Cheng, Jen-Hao
    Contributors: 劉昭麟
    Liu, Chao-Lin
    鄭人豪
    Cheng, Jen-Hao
    Keywords: 法學資訊系統
    自然語言處理
    k最近鄰居法
    自省式學習法
    Legal information system
    Natural language processing
    k nearest neighbor
    introspective learning
    Date: 2006
    Issue Date: 2009-09-17 13:59:31 (UTC+8)
    Abstract: 國外法學資訊系統已研究多年,嘗試利用科技幫助提昇司法審判的效率。重要的議題包括輔助判決,法律文件分類,或是相似案件搜尋等。本研究將針對中文裁判書的分類做進一步談討。
    在文件特徵表示方面,我們以有序詞組來表達中文裁判書,我們嘗試比較採用不同的詞彙來源對於分類效果的影響。實驗中我們分別採用一般通用的電子詞典建立一般詞組;以及以演算法取出法學專業詞彙集建立專業詞組。並依tf-idf(term frequency – inverse document frequency)的概念,設計兩種詞組權重tpf-idf(term pair frequency – inverse document frequency)以及tpf-icf(term pair frequency – inverse category frequency),來計算特徵詞組權重。
    在文件分類演算法方面,我們實作以相似度為基礎的k最近鄰居法作為系統分類機制,藉由裁判書的案由欄位,將案例分為七種類別,分別為竊盜、搶奪、強盜、贓物、傷害、恐嚇以及賭博。並藉由觀察案例資料庫的相似度分佈,以找出恰當的參數,進一步得到較佳的分類正確率與較低的拒絕率。
    我們並依照自省式學習法的精神,建立權重調整的機制。企圖藉由自省式學習法提昇分類效果,以及找出對分類有影響的詞組。而我們以案例資料庫的相似度差異值以及距離差異值,分析調整前後案例資料庫的變化,藉以觀察自省式學習法的效果。
    Legal information systems for non-Chinese languages have been studied intensively in the past many years. There are several topics under discussion, such as judgment assistance, legal document classification, and similar case search, and so on. This thesis studies the classification of Chinese judgment documents.
    I use phrases as the indices for documents. I attempt to compare the influences of different lexical sources for segmenting Chinese text. One of the lexical sources is a general machine-readable dictionary, Hownet, and the other is the set of terms algorithmically extracted from legal documents. Based on the concept of tf-idf, I design two kinds of phrase weights: tpf-idf and tpf-icf.
    In the experiments, I use the k-nearest neighbor method to classify Chinese judgment documents into seven categories based on their prosecution reasons: larceny(竊盜), robbery (搶奪), robbery by threatening or disabling the victims (強盜), receiving stolen property (贓物), causing bodily harm (傷害), intimidation (恐嚇), and gambling(賭博). To achieve high accuracy with low rejection rates, I observe and discuss the distribution of similarity of the training documents to select appropriate parameters. In addition, I also conduct a set of analogous experiments for classifying documents based on the cited legal articles for gambling cases.
    To improve the classification effects, I apply the introspective learning technique to adjust the weights of phrases. I observe the intra-cluster similarity and inter-cluster similarity in evaluating the effects of weight adjustment on experiments for classifying documents based on their prosecution reasons and cited articles.
    Reference: [1] HowNet電子詞典1999年版本 153H153Hhttp://www.keenage.com/
    [2] WestLaw Thesaurus 154H154Hhttp://lawschool.westlaw.com/
    [3] 中央研究院 155H155Hhttp://www.sinica.edu.tw/中央研究院平衡語料庫156H156Hhttp://www.sinica.edu.tw/~tibe/2-words/modern-words/index.html
    [4] 中華民國計算語言學http://www.aclclp.org.tw/
    中文詞知識庫及中文語法http://www.aclclp.org.tw/use_ckip_c.php
    [5] 司法院法學檢索系統157H157Hhttp://jirs.judicial.gov.tw/
    [6] 司法院司法統計http://www.judicial.gov.tw/juds/index1.htm
    [7] 法務部全國法規資料庫 158H158Hhttp://law.moj.gov.tw/
    [8] 林吉鶴,專家系統應用於命案犯罪現場之研究,行政院國科會科資中心 NSC84-2414-H015-001,1996。
    [9] 張正宗,電腦輔助簡易刑事判決技術之探討,碩士論文,國立政治大學,台北,台灣,2003。
    [10] 陳永德,中文斷詞中長詞優先、詞頻比對與前詞優先規則之使用,博士論文,國立台灣大學,台北,台灣,1997。
    [11] 楊才蔚及呂士奇,女法官積勞成疾臨終遺言勸大家莫熬夜,東森新聞報159H159Hhttp://www.ettoday.com/2002/08/24/322-1343820.htm,2002。
    [12] 與板橋地方法院何君豪法官私人通信。
    [13] 廖鼎銘,觸犯多款法條之賭博與竊盜案件的法院文書的分類與分析,碩士論文,國立政治大學,台北,台灣,2004。
    [14] 謝淳達,利用詞組檢索中文訴訟文書之研究,碩士論文,國立政治大學,台北,台灣,2005。
    [15] ACM International Conference on Artificial Intelligence and Law (ICAIL): http://portal.acm.org/browse_dl.cfm?coll=portal&dl=ACM&idx=SERIES732&linked=1&part=series
    [16] K. Al-Kofahi, A. Tyrrell, A. Vachher and P. Jackson, A machine learning approach to prior case retrieval, Proceedings of the Eighth International Conference on Artificial Intelligence and Law, pp. 88-93, 2001.
    [17] K. D. Ashley and E. L. Rissland, But, see, accord: Generating Blue Book citation in HYPO, Proceedings of the First International Conference on Artificial Intelligence and Law, pp. 67-74, 1987.
    [18] S. Bruninghaus, K. D. Ashley, Toward adding knowledge to learning algorithms for indexing legal cases, Proceedings of the Seventh International Conference on Artificial Intelligence and Law, pp. 9-17, 1999.
    [19] L. F. Chien, Fast and quasi-natural language search for gigabytes of Chinese texts, Proceedings of the Eighteenth ACM Special Interest Group of Information Retrieval conference on Research and development in information retrieval, pp.112–120, 1995.
    [20] L. F. Chien, PAT-tree-based keyword extraction for Chinese information retrieval, Proceedings of the Twentieth Annual International ACM Special Interest Group of Information Retrieval Conference on Research and Development in Information Retrieval, pp. 50-58, 1997.
    [21] R. Feldman, I. Dagan, Mining text using keyword distributions, Journal of Intelligent Information Systems, Volume 10, pp. 281-300, 1998.
    [22] K. M. Hammouda and M. S. Kamel, Phrase-based document similarity based on an index graph model, Proceedings of the Second IEEE International Conference on Data Mining, pp. 203-210, 2002.
    [23] E. H. Han, G. Karypis and V. Kumar, Text categorization using weight adjusted k-Nearest Neighbor classification, Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 53-65, 2001.
    [24] Y. J. Ko and Y. J. Seo, Automatic text categorization by unsupervised learning, Proceedings of the Eighteenth conference on Computational linguistics, pp. 453-459, 2000.
    [25] Y. J. Ko and Y. J. Seo, Text categorization using feature projections, Proceedings of the Nineteenth international conference on Computational linguistics, Volume 1, pp.1-7, 2002.
    [26] G. Lame, A categorization method for French legal documents on the Web, Proceedings of the Eighth International Conference on Artificial Intelligence and Law, pp. 219-220, 2001.
    [27] B. L. Li, Q. Lu and S. W. Yu, An adaptive k-nearest neighbor text categorization strategy, ACM Transactions on Asian Language Information Processing,Volume 3 , Issue 4, pp. 215 -226, 2004
    [28] C. D. Manning, and H. Schutze, Foundations of Statistical Natural Language Processing, The MIT Press, 1999.
    [29] T. Mitchell, Machine Learning, McGraw Hill, 1997.
    [30] D. D. Palmer and J. D. Burger, Chinese Word Segmentation and Information Retrieval, AAAI Spring Symposium on Cross-Language Text and Speech Retrieval, Electronic Working Notes, 1997
    [31] E. L. Rissland and K. D. Ashley, A case-based system for Trade Secrets Law, Proceedings of the First International Conference on Artificial Intelligence and Law, pp. 60-66, 1987.
    [32] U. J. Schild, Intelligent computer systems for criminal sentencing, Proceedings of the Fifteenth International Conference on Artificial Intelligence and Law, pp. 229-238, 1995.
    [33] P. Thompson, Automatic categorization of case law, Proceedings of the Eighth International Conference on Artificial Intelligence and Law, pp.70-77, 2001.
    [34] J. J. Tsay and J. D. Wang, Design and evaluation of approaches to automatic Chinese text categorization, Computational Linguistics and Chinese Language Processing, Volume 5, No.2, pp. 43-58, 2000.
    [35] B. Verheij, Automated argument assistance for lawyers, Proceedings of the Seventh international conference on Artificial intelligence and law, pp. 43-52, 1999.
    [36] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, Elsevier, 2005.
    [37] Y .Yang, A study of thresholding strategies for text categorization, Proceedings of the Twenty-fourth annual international ACM Special Interest Group of Information Retrieval Conference on Research and Development in Information Retrieval, pp. 137-145, 2001.
    [38] Z. Zhang, Q. Yang , Feature weight maintenance in case bases using introspective learning, Journal of Intelligent Information Systems, Volume 16, pp. 95-116, 2001.
    Description: 碩士
    國立政治大學
    資訊科學學系
    93753030
    95
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0093753030
    Data Type: thesis
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    75303001.pdf49KbAdobe PDF2928View/Open
    75303002.pdf74KbAdobe PDF21122View/Open
    75303003.pdf67KbAdobe PDF2945View/Open
    75303004.pdf104KbAdobe PDF21181View/Open
    75303005.pdf116KbAdobe PDF21442View/Open
    75303006.pdf139KbAdobe PDF21760View/Open
    75303007.pdf122KbAdobe PDF21684View/Open
    75303008.pdf130KbAdobe PDF21537View/Open
    75303009.pdf275KbAdobe PDF24128View/Open
    75303010.pdf286KbAdobe PDF21226View/Open
    75303011.pdf109KbAdobe PDF2885View/Open
    75303012.pdf73KbAdobe PDF21534View/Open
    75303013.pdf5478KbAdobe PDF23247View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback