Reference: | [1] A. Inokuchi, T. Washio, and H. Motoda. An Apriori-based Algorithm for MiningFrequent Substructures from Graph Data. Proceedings of the European Conference on Principles of Data Mining and Knowledge Discovery, 2000. [2] M. Kuramochi, and G. Karypis. Frequent Subgraph Discovery. Proceedings of IEEE International Conference on Data Mining, 2001. [3] X. Yan, and J. Han. gSapn: Graph-based Substructure Pattern Mining. Proceedings of IEEE International Conference on Data Mining, 2002. [4] X. Yan, and J. Han. CloseGraph: Mining Closed Frequent Graph Patterns. Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003. [5] R. Agrawal, and R. Srikant. “Mining Sequential Patterns,” Proceedings of International Conference on Data Engineering, 1995. [6] R. Srikant, and R. Agrawal. Mining Sequential Patterns: Generalizations and Performance Improvements. Proceedings of International Conference on Extending Database Technology, 1996. [7] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. C. Hsu. FreeSpan: Frequent Pattern-Projected Sequential Pattern Mining. Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2000. [8] J. Pei, J. Han, B. Mortazavi-Asl, and H. Pinto. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. Proceedings of International Conference on Data Engineering, 2001. [9] G. Greco, A. Guzzo, G. Manco, and D. Saccà. Mining Frequent Instances on Workflows. Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2003. [10] G. Greco, A. Guzzo, G. Manco, and D. Saccà. Mining and Reasoning on Workflows. IEEE Transactions on Knowledge and Data Engineering, Vol. 17, No.4, pp. 519-534, 2005. [11] R. Agrawal, and R. Srikant. Fast Algorithms for Mining Association Rules. Proceedings of International Conference on Very Large Data Bases, 1994. [12] A. K. A. de Medeiros, W. M. P. van der Aalst, and A. J. M. M. Weijters. Workflow Mining: Current Status and Future Directions. Proceedings of International Conference on Cooperative Information Systems, 2003. [13] G. Greco, A. Guzzo, G. Manco, L. Pontieri, and D. Saccà. Mining Constrained Graphs: The Case of Workflow Systems. Constraint-Based Mining and Inductive Databases, pp. 155-171, 2004. [14] R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Workflow Logs. Proceedings of International Conference on Extending Database Technology, 1998. [15] G. Greco, A. Guzzo, L. Pontieri, and D. Saccà. On the Mining of Complex Workflow Schemas. Proceedings of Italian Conference on Advanced Database Systems, 2004. [16] G. Greco, A. Guzzo, L. Pontieri, and D. Saccà. Mining Expressive Process Models by Clustering Workflow Traces. Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2004. [17] W. M. P. van der Aalst, B. F. van Dongena, J. Herbst, L. Marustera, G. Schimm, and A. J. M. M. Weijters. Workflow Mining: A Survey of Issues and Approach. Data & Knowledge Engineering, Volume 47, Issue 2, pp. 237-267, 2003. [18] S. Y. Hwang, C. P. Wei, and W. S. Yang. Discovery of Temporal Patterns from Process Instances. Computers in Industry, Volume 53, Issue 3, pp. 345-364, 2004. [19] W. M. P. van der Aalst, and A. J. M. M. Weijters. Process Mining: A Research Agenda. Computers in Industry, Volume 53, Issue 3, pp. 231-244, 2004. [20] G. Schimm. Mining Exact Models of Concurrent Workflows. Computers in Industry, Volume 53 , Issue 3, pp. 265-281, 2004. [21] L. Maruster, W. M. P. van der Aalst, T. Weijters, A. van der Bosch, and W. Daelemans. Automated Discovery of Workflow Models from Hospital Data. Proceeding of Belgium-Netherlands Conference on Artificial Intelligence, 2001. [22] S. S. Pinter, and M. Golani. Discovering Workflow Models from Activities’ Lifespans. Computers in Industry, Volume 53, Issue 3, pp. 283-296, 2004. [23] R. J. van Glabbeek, and W. P. Weijland. Branching Time and Abstraction in Bisimulation Semantics. Journal of ACM, Vol. 43, No. 3, pp. 555-600, 1996. [24] H. Mannila, and D. Rusakov. Decomposition of Event Sequences into Independent Components. Proceeding of SIAM International Conference on Data Mining, 2001. [25] J. E. Cook, and A. L. Wolf. Discovering Models of Software Processes from Event-based Data. ACM Transactions on Software Engineering and Methodology, Vol. 7, No. 3, pp. 215-249, 1998. [26] W. M. P. van der Aalst, and B. F. van Dongen. Discovering Workflow Performance Models from Timed Logs. Proceedings of International Conference on Engineering and Deployment of Cooperative Information Systems, 2002. [27] D. Grigori, F. Casati, U. Dayal, and M. C. Shan. Improving Business Process Quality through Exception Understanding, Prediction, and Prevention. Proceeding of International Conference on Vary Large Data Bases, 2001. [28] G. Schimm. Process Miner-A Tool for Mining Process Schemes from Event-based Data. Proceeding of European Conference on Artificial Intelligence, 2002. [29] L. Maruster, A. J. M. M. Weijters, W. M. P. van der Aalst, and A. van den Bosch. Process Mining:Discovering Direct Successors in Process Logs. Proceedings of International Conference on Discovery Science, 2002. [30] W. M. P. van der Aalst, A. J. M. M. Weijters, and L. Maruster. Workflow Mining:Which Process can be Rediscovered?. BETA Working Paper Series, WP 74, Eindhoven University of Technology, 2002. [31] J. E. Cook, and A. L. Wolf. Event-Based Detection of Concurrency. ACM SIGSOFT Software Engineering Notes, Vol. 23, Issue 6, pp. 35-45, 1998. [32] J. E. Cook, and A. L. Wolf. Software Process Validation:Quantitatively Measuring the Correspobdence of a Process to a Model. ACM Transactions on Software Engineering and Methodology, Vol. 8, No. 2, pp. 147-176, 1999. [33] G.. Greco, A. Guzzo, G.. Manco, and D. Saccà. Mining Unconnected Patterns in Workflows. Proceeding of SIAM International Conference on Data Mining, 2005. [34] B. F. van Dongen, and W. M. P. van der Aalst. Multi-phase Process Mining:Building Instance Graphs. Proceeding of International Conference on Conceptual Modeling, 2004. [35] E. Liu, A. Kumar, and W. M. P. van der Aalst. A Formal Modeling Approach for Supply Chain Event Management. Workshop on Issues in the Theory of Security, 2004. [36] S. Dustdar, T. Hoffmann, and W. M. P. van der Aalst. Mining of Ad-hoc Business Processes with TeamLog. Technical Report TUV-1841-2004-07, Vienna University of Technology, 2004. [37] J. Herbst, and D. Karagiannis. Workflow Mining with InWoLvE. Computers in Industry, Volume 53 , Issue 3, pp. 245-264, 2004. [38] L. Dehaspe, and H. Toivonen. Discovery of Frequent DATALOG Patterns. Data Mining and Knowledge Discovery, Volumn 3, Issue 1, pp. 7-36, 1999. [39] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast Discovery of Connection Subgraphs. Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004. [40] J. Huan, W. Wang, and J. Prins. Efficient Mining of Frequent Subgraph in the Presence of Isomorphism. Proceedings of IEEE International Conference on Data Mining, 2003. [41] J. E. Cook, and A. L. Wolf. Automating Process Discovery through Event-data Analysis. Proceedings of International Conference on Software Engineering, 1995. [42] W. S. Yang. Mining Workflow Instances to Support Workflow Schema Design. Master Thesis, National Sun Yat-sen University, 1998. [43] S. Y. Hwang, and W. S. Yang. On the Discovery of Workflow Models from Their Instances. Decision Support System, Vol. 34, Issue 1, pp. 41-57, 2002. [44] W. M. P. van der Aalst, A. P. Barros, A.H.M ter Hofstede, and B. Kiepuszewski. Advance Workflow Patterns. Proceedings of International Conference on Cooperative Information System, 2000. |