English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 112721/143689 (78%)
Visitors : 49507382      Online Users : 752
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 心理學系 > 學位論文 >  Item 140.119/49443
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/49443


    Title: 短期情緒對酬賞預期錯誤訊息的調節效果:以回饋關聯負波為例
    The effect of short-term affective modulation on reward prediction error signal: a study of feedback-related negativity
    Authors: 陳俊宇
    Chen, Chun Yu
    Contributors: 廖瑞銘
    陳俊宇
    Chen, Chun Yu
    Keywords: 事件關聯電位
    回饋關聯負波
    增強學習
    國際情緒圖片系統
    晚正向波
    event-related potential
    feedback-related negativity
    reinforcement learning
    IAPS
    late positive potential
    Date: 2009
    Issue Date: 2010-12-08 11:40:00 (UTC+8)
    Abstract: 人們對於錯誤訊息處理經由自我覺察或外在回饋之管道,可藉由事件關聯電位分別測得ERN (error-related negativity) 及FRN (feedback-related negativity)。過去研究曾指出雙側作業(Flanker task)中錯誤所引發的ERN會受到以圖片呈現的短期情緒所調節,然而對於回饋誘發的FRN與個體情緒調節的關係則未曾被探討過。過去FRN的研究認為唯有當受試者所進行的作業為增強學習作業時,受試者對於回饋結果的預期狀態才能反映於FRN的反應強度。本研究利用兩個實驗分別採用非增強學習作業及增強學習作業,其中並以IAPS情緒圖片進行短期情緒的引發,在受試者於實驗中對其反應結果的不同預期狀態,探測受試者FRN受短期情緒調節的效果。
    實驗一利用非增強學習作業,結果顯示FRN的強度可以反映受試者對於回饋結果的預期狀態,其中以非預期時FRN的強度為最大,預期時FRN的強度為最小;另外,正向情緒圖片對於FRN具有調節效果,正向情緒下FRN反應強度小於中性以及負向情緒下FRN反應強度。實驗二利用增強學習作業,前述的FRN強度反映受試者對回饋結果的預期效果,只有在實驗前半段的嘗試次中被觀測到,此效果未見於全部嘗試次納入分析;另外,實驗二中沒有觀察到情緒對於FRN的調節效果。
    綜合而言,本研究發現受試者唯有持續處於學習的情形下,FRN才能反映受試者對於回饋結果的預期狀態,情緒對FRN的調節效果也僅於此情況下才能被觀測到。
    Error-related information in human can be processed via self-awareness and/or feedback given externally, which are measurable by the use of event-related potential (ERP) and termed error-related negativity (ERN) and feedback-related negativity (FRN) respectively. Previous studies showed that short-term affective stimuli would modulate the magnitude of ERN elicited by Flanker task. However, such modulation effect has not been tested on FRN. Furthermore, the magnitude of FRN is indicated to be related to the expectancy states toward feedback when the subject is undergoing a reinforcement learning task. Present study, thus, was designed to test the affective modulation effect on FRN in two separate tasks. In which, emotional pictures adopted from IAPS were used as the short-term affective stimuli, and different expectancy states in both non-reinforcement learning task (Experiment1) and reinforcement learning task (Experiment 2) were manipulated.
    In the results of Experiment 1, the magnitude of FRN was larger under the unexpected condition in comparing to the expected one. Modulation effect of short-term affective stimuli on FRN was obtained when positive emotion pictures were presented in non-reinforcement learning task, which FRN amplitude was significantly smaller in comparing to those measured after the presentation of neutral and negative pictures. In the results of Experiment 2, FRN elicited in the unexpected condition was only obtained from analyzing the dada collected in the first half of trails. Such effect was not confirmed when the data from all trials were analyzed. A lack of modulation effect of short-term affective stimuli on FRN appeared in Experiment 2.
    In conclusion, it is indicated that the expectancy depended FRN is most apparent when the subject is undergoing a continuous learning-demanded process. Meanwhile, short-term affective stimuli can modulate such FRN.
    Reference: Ashby, F. G., Isen, A. M., Turken, & U. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychological Review, 106(3), 529-550.
    Ashby, F. G., Valentin, V. V., & Turken, U. (2002). The effects of positive affect and arousal on working memory and executive attention. In S. C. Moore & M. Oaksford (Eds.), Emotional cognition: From brain to behaviour (pp. 245-287). Amsterdam: Benjamins.
    Barto, A. G., Sutton, R. S., John, W. D., & Vivian Packard, D. (1997). Chapter 19 Reinforcement learning in artificial intelligence Advances in Psychology (Vol. Volume 121, pp. 358-386): North-Holland.
    Bradley, M. M., Codispoti, M., Cuthbert, B. N., & Lang, P. J. (2001). Emotion and motivation I: Defensive and appetitive reactions in picture processing. Emotion, 1(3), 276-298.
    Brown, T. A., Chorpita, B. F., & Barlow, D. H. (1998). Structural relationships among dimensions of the DSM-IV anxiety and mood disorders and dimensions of negative affect, positive affect, and autonomic arousal. Journal of Abnormal Psychology, 107(2), 179-192.
    Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280(5364), 747.
    Clark, L. A., & Watson, D. (1991). Tripartite model of anxiety and depression: Psychometric evidence and taxonomic implications. Journal of Abnormal Psychology, 100(3), 316-336.
    Codispoti, M., Ferrari, V., & Bradley, M. M. (2006). Repetitive picture processing: Autonomic and cortical correlates. Brain Research, 1068(1), 213-220.
    Cuthbert, B. N., Schupp, H. T., Bradley, M. M., Birbaumer, N., & Lang, P. J. (2000). Brain potentials in affective picture processing: covariation with autonomic arousal and affective report. Biological Psychology, 52(2), 95-111.
    de Bruijn, E. R. A., Hulstijn, W., Verkes, R. J., Ruigt, G. S. F., & Sabbe, B. G. C. (2004). Drug-induced stimulation and suppression of action monitoring in healthy volunteers. Psychopharmacology, 177(1/2), 151-160.
    Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4(6), 385-390.
    Gehring, W. J., Himle, J., & Nisenson, L. G. (2000). Action-monitoring dysfunction in obsessive-compulsive disorder. Psychological Science, 11(1), 1-6.
    Gehring, W. J., & Willoughby, A. R. (2002). The medial frontal cortex and the rapid processing of monetary gains and losses. Science, 295(5563), 2279-2282.
    Gemba, H., Sasaki, K., & Brooks, V. B. (1986). Error potentials in limbic cortex (anterior cingulate area 24) of monkeys during motor learning. Neuroscience Letters, 70(2), 223-227.
    Gibson, J., Krigolson, O. E., & Holroyd, C. B. (2006). Sensitivity of the feedback errorrelated negativity to reward probability. Psychophysiology, 43(1), S41.
    Hajcak, G., Holroyd, C. B., Moser, J. S., & Simons, R. F. (2005). Brain potentials associated with expected and unexpected good and bad outcomes. Psychophysiology, 42(2), 161-170.
    Hajcak, G., McDonald, N., & Simons, R. F. (2003). Anxiety and error-related brain activity. Biological Psychology, 64(1-2), 77-90.
    Hajcak, G., McDonald, N., & Simons, R. F. (2004). Error-related psychophysiology and negative affect. Brain and Cognition, 56(2), 189-197.
    Hajcak, G., Moser, J. S., Holroyd, C. B., & Simons, R. F. (2007). It`s worse than you thought: The feedback negativity and violations of reward prediction in gambling tasks. Psychophysiology, 44(6), 905-912.
    Hajcak, G., & Simons, R. F. (2002). Error-related brain activity in obsessive-compulsive undergraduates. Psychiatry Research, 110(1), 63-72.
    Heldmann, M., Russeler, J., & Munte, T. (2008). Internal and external information in error processing. BMC Neuroscience, 9(1), 33.
    Hikosaka, O. (2010). The habenula: from stress evasion to value-based decision-making. [10.1038/nrn2866]. Nat Rev Neurosci, 11(7), 503-513.
    Hohnsbein, J., Falkenstein, M., & Hoorman, J. (1989). Error processing in visual and auditory choice reaction time tasks. Journal of Psychophysiology, 3, 32.
    Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679-709.
    Holroyd, C. B., & Krigolson, O. E. (2007). Reward prediction error signals associated with a modified time estimation task. Psychophysiology, 44(6), 913-917.
    Holroyd, C. B., Krigolson, O. E., Baker, R., Lee, S., & Gibson, J. (2009). When is an error not a prediction error? An electrophysiological investigation. Cognitive, Affective, & Behavioral Neuroscience, 9(1), 59-70.
    Holroyd, C. B., Larsen, J. T., & Cohen, J. D. (2004). Context dependence of the event-related brain potential associated with reward and punishment. Psychophysiology, 41(2), 245-253.
    Holroyd, C. B., Nieuwenhuis, S., Yeung, N., & Cohen, J. D. (2003). Errors in reward prediction are reflected in the event-related brain potential. Neuroreport, 14(18), 2481-2484.
    Hot, P., Saito, Y., Mandai, O., Kobayashi, T., & Sequeira, H. (2006). An ERP investigation of emotional processing in European and Japanese individuals. Brain Research, In Press, Corrected Proof.
    Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2005). International Affective Picture System (IAPS): Affective rating of pictures and instruction manual. Gainesville, Fl: Technical Report no. A-6. University of Florida.
    Larson, M. J., Perlstein, W. M., Stigge-Kaufman, D., Kelly, K. G., & Dotson, V. M. (2006). Affective context-induced modulation of the error-related negativity. Neuroreport, 17(3), 329-333.
    Lee, Angela Y., & Sternthal, B. (1999). The Effects of Positive Mood on Memory. Journal of Consumer Research, 26, 115-127.
    Lorist, M. M., Boksem, M. A. S., & Ridderinkhof, K. R. (2005). Impaired cognitive control and reduced cingulate activity during mental fatigue. Cognitive Brain Research, 24(2), 199-205.
    Luu, P., Collins, P., & Tucker, D. M. (2000). Mood, personality, and self-monitoring: Negative affect and emotionality in relation to frontal lobe mechanisms of error monitoring. Journal of Experimental Psychology: General, 129(1), 43-60.
    Müente, T. F., Heldmann, M., Hinrichs, H., Marco-Pallares, J., Krämer, U. M., Sturm, V., et al. (2008). Nucleus accumbens is involved in human action monitoring: evidence from invasive electrophysiological recordings. Frontiers in Human Neuroscience, 1(11), 1-6.
    Miltner, W. H. R., Braun, C. H., & Coles, M. G. H. (1997). Event-related brain potentials following incorrect feedback in a time-estimation task: evidence for a "generic" neural system for error detection. Journal of Cognitive Neuroscience, 9(6), 788-798.
    Nieuwenhuis, S., Holroyd, C. B., Mol, N., & Coles, M. G. H. (2004). Reinforcement-related brain potentials from medial frontal cortex: origins and functional significance. Neuroscience & Biobehavioral Reviews, 28(4), 441-448.
    Niki, H., & Watanabe, M. (1979). Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain Research, 171(2), 213-224.
    Salas, R., Baldwin, P., de Biasi, M., & Montague, P. R. (2010). BOLD Responses to Negative Reward Prediction Errors in Human Habenula. Frontiers in Human Neuroscience, 4(36).
    Schultz, W. (2006). Behavioral Theories and the Neurophysiology of Reward. Annual Review of Psychology, 57(1), 87-115.
    Schupp, H. T., Cuthbert, B. N., Bradley, M. M., Cacioppo, J. T., Ito, T., & Lang, P. J. (2000). Affective picture processing: The late positive potential is modulated by motivational relevance. Psychophysiology, 37(2), 257-261.
    Wiswede, D., Münte, T. F., Goschke, T., & Rüsseler, J. (2009). Modulation of the error-related negativity by induction of short-term negative affect. Neuropsychologia, 47(1), 83-90.
    Wiswede, D., Münte, T. F., Krämer, U. M., & Rüsseler, J. (2009). Embodied emotion modulates neural signature of performance monitoring. PLoS ONE, 4(6), e5754.
    Yasuda, A. C. A., Sato, A., Miyawaki, K., Kumano, H., & Kuboki, T. (2004). Error-related negativity reflects detection of negative reward prediction error. Neuroreport, 15(16), 2561-2565.
    Yeung, N., Holroyd, C. B., & Cohen, J. D. (2005). ERP correlates of feedback and reward processing in the presence and absence of response choice. Cereb. Cortex, 15(5), 535-544.
    Zani, A., & Proverbio, A., Mado. (2003). The Cognitive Electrophysiology of Mind and Brain. San Diego: Academic Press.
    Zirnheld, P. J., Carroll, C. A., Kieffaber, P. D., O`Donnell, B. F., Shekhar, A., & Hetrick, W. P. (2004). Haloperidol impairs learning and error-related negativity in humans. Journal of Cognitive Neuroscience, 16, 1098-1112.
    Description: 碩士
    國立政治大學
    心理學研究所
    95752006
    98
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0095752006
    Data Type: thesis
    Appears in Collections:[心理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    200601.pdf6123KbAdobe PDF21860View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback