English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 96741/127401 (76%)
Visitors : 32391989      Online Users : 452
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/52316


    Title: 車載雷射掃描點雲資料自動萃取路廊地物之研究
    Other Titles: The Study of Automatic Extraction of Terrain Objects in Road Corridors from Vehicle-Based Laser Scanning Point Data
    Authors: 邱式鴻
    Contributors: 行政院國家科學委員會
    國立政治大學地政學系
    Keywords: 車載雷射掃描;點雲;路廊資訊;萃取;模朔;強鈍估值法
    Vehicle-based laser scanning;Point Cloud;Road Corridor Information;Extraction;Modeling;Robust Estimation
    Date: 2013-03
    Issue Date: 2012-01-02 10:00:28 (UTC+8)
    Abstract: 車載雷射掃描系統可以直接獲取目標物三維點雲資料,因此可用來獲取詳盡的路廊資訊,路廊資訊則可應用於噪音模擬、道路安全、道路及相關設施維護、定位服務、汽車和行人導航,甚至發展未來駕駛協助系統。由於目前國內較缺乏以車載雷射掃描點雲自動萃取路廊地物的相關研究,因此本計劃預計全程執行期間為兩年,第一年(100年度)重點在於分析車載掃描點雲資料的特性並發展由點雲自動萃取並模朔路面地物,如道路面、燈柱、電線桿、及交通號誌等地物的演算法。第二年(101年度)重點則在發展由點雲自動萃取並模朔路旁地物,包含路樹、建物牆面、柱狀物、門、以及窗戶的演算法。兩年的研究期間亦將探討萃取及模朔其他路廊地物(如安全島、廣告招牌)的可行性。由於點雲資料量相當大且相關路廊地物眾多且複雜,因此演算法中將加入相關物空間知識並以每一掃描線斷面上的點雲為處理單元,處理過程中亦將引入強鈍估值法進行粗差偵錯協助每一掃描斷面基本特徵萃取與初步地物分類,並協助連續掃描斷面上分類點雲之群聚、叢集,進而發展萃取與模 Vehicle-based laser scanning system can be employed to directly huge 3D point clouds for the extraction of detailed road corridor information. The detailed road corridor information can be utilized for noise modeling, road safety, the maintenance of reverent road facilities, location-based services, navigation for cars and pedestrians, even for the development of future driver assistance system. Nowadays, the relevant studies on the automatic extraction and modeling for the terrain object in road corridors are lack in Taiwan, therefore the whole study period is two years for detailed study. The study in the first year focuses on the analysis of point clouds from the vehicle-based laser scanning system and the development of the automatic extraction and modeling for the terrain object on the road surfaces. The terrain objects on the road surface include road surface, pole-like objects (e.g. light lamps and traffic signs). The algorithms for automatic extraction and modeling of roadside terrain objects, including the trees, the building facades, building pillars, the doors and the windows, will be developed in the second year. The feasibility of automatic extraction and modeling for other objects, e.g. traffic islands and commercial boards in road corridors will be developed in this two-year study. Due to the huge data of point clouds and the complicated terrain objects in the road corridors, the algorithms will employ the relevant object knowledge in the basic processing unit, the scan line profile, for point calcification, grouping and clustering. Meanwhile, the concept of robust estimation for outlier detection will used for the basic feature extraction and classification and for the grouping and clustering point clouds belonging to the same object from the adjacent scan line profiles. It is expected to develop the practical algorithms for the automatic extraction and modeling the terrain objects in the road corridors.
    Relation: 應用研究
    學術補助
    研究期間:10008~ 10107
    研究經費:480仟元
    Source URI: http://grbsearch.stpi.narl.org.tw/GRB_Search/grb/show_doc.jsp?id=2323509
    Data Type: report
    Appears in Collections:[地政學系] 國科會研究計畫

    Files in This Item:

    File Description SizeFormat
    100-2221-E004-010.PDF2303KbAdobe PDF425View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback