政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/60095
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 112721/143689 (78%)
Visitors : 49548938      Online Users : 264
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/60095


    Title: 鈷/鉑垂直磁化多層膜中結構對磁耦合及電性的影響
    Influence of structure on magnetic coupling and electric properties in cobalt/platinum multilayer with spontaneously perpendicular-magnetization
    Authors: 曾嘉裕
    Tseng, Chia Yu
    Contributors: 李尚凡
    Lee, Shang Fan
    曾嘉裕
    Tseng, Chia Yu
    Keywords: 垂直異向性
    垂直磁化
    鈷/鉑多層膜
    Perpendicular anisotropy
    Perpendicular-magnetization
    Co/Pt
    Date: 2010
    Issue Date: 2013-09-04 15:28:04 (UTC+8)
    Abstract: 本論文主要在研究多層膜之垂直異向性結構組成及其介面特質,本實驗多層膜選取的材料為鐵磁性的鈷(Co)以及貴重金屬的鉑(Pt),並利用濺鍍(Sputtering)系統來製作(鈷/鉑)多層膜樣品,最初的實驗為尋找(鈷/鉑)多層膜結構組成最佳垂直易性發生之條件,所以分別變化鐵磁層鈷之厚度、一般金屬層鉑之厚度、(鈷/鉑)雙層層數及緩衝buffer layer層鉑之厚度,並利用震動樣品磁度儀(VSM)及超導量子干涉儀(SQUIDE)分別量測垂直及平行磁場方向之磁化強度M對磁場field H的關係,再由M-H圖進行判別其垂直異向性的程度。

    在最初的實驗部分可了解如何得到最佳(鈷/鉑)垂直異向性多層膜之結構,並從中可得不同緩衝層鉑之厚度、(鈷/鉑)雙層層數及雙層內鉑之厚度的矯頑場有一趨勢存在,於第二部分的實驗即利用這些矯頑場之趨勢來製作一系列產生巨磁效應之三層膜結構,其中的鐵磁層由(鈷/鉑)垂直異向性多層膜取代,並對此結構做一系列量測,利用震動樣品磁度儀(VSM)量測其磁化強度對磁場的關係、利用LR700系統及物理低溫量測系統(PPMS)量測其異常Hall effect霍爾效應(EHE)現象和電阻對磁場的關係,再將這一系列的量測結果分析其中被一般金屬層鉑所隔開的上下(鈷/鉑)垂直異向性多層膜之間耦合程度。
    The topic of this thesis is about the property of the interface and structure in the multilayers with perpendicular anisotropy. The materials of this multilayers are ferromagnetic cobalt and platinum. We use sputtering system to fabricate cobalt/platinum multilayer with various thicknesses. The initial experiment is to search for the optimum condition that develop cobalt/platinum multilayer with perpendicular anisotropy. Then, the influenceof the buffer layer of platinum is studied. We use Vibrating sample magnetometer (VSM) and superconducting quantum interference device (SQUID) magnetometer to measure the magnetization vs. magnetic field relation by applied magnetic fields in both out of plane and in plane directions to distinguishe the degree of perpendicular anisotropy from the M-H figures.
    From the initial experiments we can understand how to get the optimum structure of cobalt/platinum perpendicular anisotrpy multilayer. There is a tendency exists in the coercivity depending on different thicknesses of the ferromagnetic layer cobalt, the normal noble platinum, the number of bilayers of cobalt/platinum, and the buffer layer of platinum. In the second part of this experiment we used the difference of coercivities to fabricate a series of trilayers structures that produce giant magnetoresistance effect. The individual ferromagnetic layer was cobalt/platinum perpendicular anisotropy multilayer. The structures was measured by VSM to study magnetization vs. field relation. A LR700 resistance bridge and a physical properties measurement system (PPMS) were used to measure the Anomalous Hall Effect (AHE) and resistant vs. field relation.
    Reference: [1] IEEE Trans. Magn. MAG-7, 150 (1971).
    [2] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen van Dau, F. Petroff, P. Eitenne, G.
    Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
    [3] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828
    (1989).
    [4] S. S. P. Parkin, Phys. Rev. Lett. 67, 3598 (1991).
    [5] S. S. P. Parkin, N. More and K. P. Roche, Phys. Rev. Lett. 64, 2304 (1990).
    [6] J. S. Moodera, L. R. Kinder, T. M. Wong and R. Meservey, Phys. Rev. Lett. 74,
    3273 (1995).
    [7] Yiming Huai, Mahendra Pakala, Zhitao Diao, and Yunfei Ding, Appl. Phys. Lett.
    87, 222510 (2005).
    [8] Hideaki Fukuzawa, Hiromi Yuasa, Susumu Hashimoto, Hitoshi Iwasaki, and
    Yoichiro Tanaka, Appl. Phys. Lett. 87, 082507 (2005).
    [9] Chunghee Nam, Ki-Su Lee, and B. K. Cho, J. Appl. Phys. 97, 10c510 (2005).
    [10] Xilin Peng, Haiwen Xi, Eric Granstrom, and Song Xue, Phys. Rev. B 72, 052403
    (2005).
    [11] Naoki Nishimura, Tadahiko Hirai, Akio Koganei, Takashi Ikeda, Kazuhisa
    Okano, Yoshinobu Sekiguchi, and Yoshiyuki Osada., J. Appl. Phys. 97, 5246
    (2002).
    [12] Néel, J. Phys. Radium 15, 225 (1954).
    [13] U. Gradmann and J. Mueller, Phys. Status. Solidi. (B) 27, 313 (1968).
    [14] P. F. Carcia, A. D. Meinhaldt, and A. Suna, Appl. Phys. Lett. 47, 178 (1985).
    [15] P. F. Carcia, J. Appl. Phys. 63, 5070 (1988).
    [16] S. Mangin, D. Ravelosona, J. A. Katine, M. J. Carey, B. D Terris and Eric E.
    Fullerton, Nature Materials 5, 210 (2006).
    [17] B. D. Cullity,Introduction to magnetic materials.
    [18] William D. Callister, Materials science and engineering an introduction.
    [19] S. Ferrer, J. Alvarez, E. Lundgren, X. Torrelles, P. Fajardo, and F. Boscherini,
    Phys. Rev. B 56, 9848 (1997).
    [20] D. Weller, J. Stöhr, R. Nakajima , A. Carl, M. G. Samant, C. Chappert, R. Mégy,
    P. Beauvillain, P. Veillet, and G. A. Held, Phys. Rev. Lett. 75, 3752 (1995).
    [21] C. Chappert and P. Bruno, J. Appl. Phys. 64, 5736 (1988).
    [22] S. Tsunashima, and K. Nagase, IEEE Trans. Magn. 25, 3761 (1989).
    [23] W. B. Zeper, F. J. A. M. Greidanus, P. F. Carcia, and C. R. Fincher, J. Appl.
    Phys. 65, 4971 (1989).
    [24] K. Umeda, Y. Fujiwara, T. Matsumoto, K. Nakagawa, A. Itoh, J. Magn. Mater.
    156, 75 (1996).
    [25] 鄭凱文,博士論文集,(2011).
    [26] Y. Yafet, Phys. Rev. B 36, 3948 (1987).
    [27] R. Coehoorn, Phys. Rev. B 44, 9331(1991).
    [28] P. Bruno and C. Chappert, Phys. Rev. Lett. 67, 1602 (1991).
    [29] S. S. P. Parkin, Phys. Rev. Lett. 66, 2152 (1991).
    [30] J. Nogués, Ivan K. Schuller, J. Magn. Mater. 192, 203 (1999).
    [31] 邱昱哲,碩士論文集,(2008).
    [32] Z. Zhang and P. E. Wigen, J. Appl. Phys. 69, 5649 (1991).
    [33] Olav Hellwiga, Andreas Bergera, Jeffrey B. Kortrightb, Eric E. Fullerton, J.
    Magn. Mater. 319 13 (2007).
    [34] J. W. Knepper and F. Y. Yang, Phys. Rev. B 71, 224403 (2005).
    Description: 碩士
    國立政治大學
    應用物理研究所
    98755007
    99
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0098755007
    Data Type: thesis
    Appears in Collections:[Graduate Institute of Applied Physics] Theses

    Files in This Item:

    File SizeFormat
    500701.pdf10117KbAdobe PDF2608View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback