政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/60830
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 109948/140897 (78%)
Visitors : 46094379      Online Users : 910
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/60830


    Title: Retreat of a giant cataract in a long-lived (3.7 Ga - 2.6 Ga) martian outflow channel
    Authors: Warner,Nicholas H.;Gupta,Sanjeev;Kim,Jung-Rack;Lin,Shih-Yuan;Muller,Jan-Peter
    林士淵
    Contributors: 政大地政系
    Keywords: Ares Vallis;crater lakes;Hesperian
    Date: 2010-06
    Issue Date: 2013-09-13 14:10:15 (UTC+8)
    Abstract: The Ares Vallis region is surrounded by highland terrain containing both degraded and pristine large impact craters that suggest a change in climate during the Late Noachian-Early Hesperian, from warmer, wetter conditions to colder, dryer conditions. However, the regional occurrence of Hesperian-age crater outlet channels indicates that this period on Mars was characterized by episodic climate fluctuations that caused transient warming, facilitating the stability of liquid water at the surface. An extensive survey of the morphology and topography of 75 impact basins in the region indicates that of the largest degraded craters, 4 were identified with single outlet channels that suggest the former presence of water infill. These basins lack inlets indicating that water influx was likely derived from sapping of groundwater. A comparison of measured crater rim heights to modeled rim heights suggests that the bulk of the depth/diameter reduction on these craters was the result of infilling, possibly by sediments. Crater statistics indicate that crater degradation and infill occurred during a short 200 Ma interval in the Late Noachian, from 3.8 Ga to 3.6 Ga. Craters that formed after 3.6 Ga exhibit a near-pristine morphology. Our results support the hypothesis of rapid climate change at the end of the Noachian period. However, geologic relationships between the crater outlet channels and Ares Vallis indicate that drainage occurred only after the period of intense crater modification, during the Hesperian (3.5–2.9 Ga). This suggests a delay between the time of infill of the craters and the time of drainage.
    Relation: Journal of Geophysical Research: Planets, 115
    Data Type: article
    Appears in Collections:[Department of Land Economics] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    7914.pdf960KbAdobe PDF21071View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback