政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/60830
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 109952/140887 (78%)
造访人次 : 46300977      在线人数 : 1903
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/60830


    题名: Retreat of a giant cataract in a long-lived (3.7 Ga - 2.6 Ga) martian outflow channel
    作者: Warner,Nicholas H.;Gupta,Sanjeev;Kim,Jung-Rack;Lin,Shih-Yuan;Muller,Jan-Peter
    林士淵
    贡献者: 政大地政系
    关键词: Ares Vallis;crater lakes;Hesperian
    日期: 2010-06
    上传时间: 2013-09-13 14:10:15 (UTC+8)
    摘要: The Ares Vallis region is surrounded by highland terrain containing both degraded and pristine large impact craters that suggest a change in climate during the Late Noachian-Early Hesperian, from warmer, wetter conditions to colder, dryer conditions. However, the regional occurrence of Hesperian-age crater outlet channels indicates that this period on Mars was characterized by episodic climate fluctuations that caused transient warming, facilitating the stability of liquid water at the surface. An extensive survey of the morphology and topography of 75 impact basins in the region indicates that of the largest degraded craters, 4 were identified with single outlet channels that suggest the former presence of water infill. These basins lack inlets indicating that water influx was likely derived from sapping of groundwater. A comparison of measured crater rim heights to modeled rim heights suggests that the bulk of the depth/diameter reduction on these craters was the result of infilling, possibly by sediments. Crater statistics indicate that crater degradation and infill occurred during a short 200 Ma interval in the Late Noachian, from 3.8 Ga to 3.6 Ga. Craters that formed after 3.6 Ga exhibit a near-pristine morphology. Our results support the hypothesis of rapid climate change at the end of the Noachian period. However, geologic relationships between the crater outlet channels and Ares Vallis indicate that drainage occurred only after the period of intense crater modification, during the Hesperian (3.5–2.9 Ga). This suggests a delay between the time of infill of the craters and the time of drainage.
    關聯: Journal of Geophysical Research: Planets, 115
    数据类型: article
    显示于类别:[地政學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    7914.pdf960KbAdobe PDF21077检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈