English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 109077/140081 (78%)
Visitors : 43371693      Online Users : 721
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/63506

    Title: MeCP2-mediated alterations of striatal features accompany psychomotor deficits in a mouse model of Rett syndrome.
    Authors: 廖文霖
    Kao, Fang-Chi;Su, San-Hua;Carlson, Gregory C.;Liao, Wenlin
    Contributors: 神科所
    Keywords: Autism spectrum disorders;Striatum;Dopamine;μ-Opioid receptor;Calbindin;Parvalbumin
    Date: 2013.10
    Issue Date: 2014-01-17 11:11:20 (UTC+8)
    Abstract: Rett Syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the methyl-CpG-binding protein 2 (MECP2) gene. Affected individuals develop motor deficits including stereotypic hand movements, impaired motor learning and difficulties with movement. To understand the neural mechanisms of motor deficits in RTT, we characterized the molecular and cellular phenotypes in the striatum, the major input nucleus of the basal ganglia that controls psychomotor function, in mice carrying a null allele of Mecp2. These mice showed significant hypoactivity associated with impaired motor coordination and motor skill learning. We found that dopamine content was significantly reduced in the striatum of Mecp2 null mice. Reduced dopamine was accompanied by down-regulation of tyrosine hydroxylase and up-regulation of dopamine D2 receptors, particularly in the rostral striatum. We also observed that loss of MeCP2 induced compartment-specific alterations in the striatum, including reduced expression of μ-opioid receptors in the striosomes and increased number of calbindin-positive neurons in the striatal matrix. The total number of parvalbumin-positive interneurons and their dendritic arborization were also significantly increased in the striatum of Mecp2 null mice. Together, our findings support that MeCP2 regulates a unique set of genes critical for modulating motor output of the striatum, and that aberrant structure and function of the striatum due to MeCP2 deficiency may underlie the motor deficits in RTT.
    Relation: Brain Structure and Function, Published online: 12 November 2013
    Data Type: article
    Appears in Collections:[神經科學研究所 ] 期刊論文

    Files in This Item:

    File Description SizeFormat
    664.pdf1007KbAdobe PDF21152View/Open
    6._Kao,_MeCP2-ST_(BSF,_2015).pdf4214KbAdobe PDF2252View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback