English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 93932/124380 (76%)
Visitors : 29009016      Online Users : 487
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/63524

    Title: Transverse force generated by an electric field and transverse charge imbalance in spin-orbit coupled systems by an electric field and transverse charge imbalance in spin-orbit coupled systems
    Authors: 郭光宇
    Chen, Tsung-Wei;Hsu, Hsiu-Chuan;Guo, Guang-Yu
    Contributors: 應物所
    Date: 2009.10
    Issue Date: 2014-01-24 12:21:43 (UTC+8)
    Abstract: We use linear-response theory to study the transverse force generated by an external electric field and hence possible charge Hall effect in spin-orbit coupled systems. In addition to the Lorentz force that is parallel to the electric field, we find that the transverse force perpendicular to the applied electric field may not vanish in a system with an anisotropic energy dispersion. Surprisingly, in contrast to the previous results, the transverse force generated by the electric field does not depend on the spin current, but in general, it is related to the second derivative of energy dispersion only. The transverse force always vanishes in the system with an isotropic energy dispersion. However, the transverse force may also vanish in some systems with an anisotropic energy dispersion such as the two-dimensional k-cubic Dresselhaus system. Furthermore, we find that the transverse force does not vanish in the Rashba-Dresselhaus system. Therefore, the nonvanishing transverse force acts as a driving force and results in charge imbalance at the edges of the sample. This implies that a nonzero Hall voltage can be detected in the absence of an external magnetic field in anisotropic systems such as the Rashba-Dresselhaus system. The estimated ratio of the Hall voltage to the longitudinal voltage is ∼10−3. The disorder effect is also considered in the study of the Rashba-Dresselhaus system. We find that the transverse force vanishes in the presence of impurities in this system because the vertex correction and the anomalous velocity of the electron accidently cancel each other. Nonetheless, we believe that the transverse charge imbalance can be detected in the ballistic region by measuring the Hall voltage. Our interesting prediction would stimulate measurements of the Hall voltage in such spin-orbit coupled systems with an anisotropic dispersion as the Rashba-Dresselhaus system in the near future.
    Relation: Physical Review B, 80(16),165302
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1103/PhysRevB.80.165302
    DOI: 10.1103/PhysRevB.80.165302
    Appears in Collections:[應用物理研究所 ] 期刊論文

    Files in This Item:

    File Description SizeFormat
    165302.pdf429KbAdobe PDF918View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback