政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/63967
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 94986/125531 (76%)
造访人次 : 31108036      在线人数 : 446
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 會計學系 > 期刊論文 >  Item 140.119/63967


    请使用永久网址来引用或连结此文件: http://nccur.lib.nccu.edu.tw/handle/140.119/63967


    题名: Unsupervised Neural Networks Approach for Understanding Fraudulent Financial Reporting
    作者: Huang, Shin-Ying;Tsaih, Rua-Huan;Lin, Wan-Ying
    黃馨瑩;蔡瑞煌;林宛瑩
    贡献者: 會計系
    关键词: Financial reporting;Knowledge management;Neural nets;Financial statements;Fraudulent financial reporting;Growing hierarchical self-organizing map;Knowledge extraction
    日期: 2011-09
    上传时间: 2014-02-18 16:35:46 (UTC+8)
    摘要: Purpose - Creditor reliance on accounting-based numbers as a persistent and traditional standard to assess a firm's financial soundness and viability suggests that the integrity of financial statements is essential to credit decisions. The purpose of this paper is to provide an approach to explore fraudulent financial reporting (FFR) via growing hierarchical self-organizing map (GHSOM), an unsupervised neural network tool, to help capital providers evaluate the integrity of financial statements, and to facilitate analysis further to reach prudent credit decisions. Design/methodology/approach - This paper develops a two-stage approach: a classification stage that well trains the GHSOM to cluster the sample into subgroups with hierarchical relationship, and a pattern-disclosure stage that uncovers patterns of the common FFR techniques and relevant risk indicators of each subgroup. Findings - An application is conducted and its results show that the proposed two-stage approach can help capital providers evaluate the reliability of financial statements and accounting numbers-based decisions. Practical implications - Following the SOM theories, it seems that common FFR techniques and relevant risk indicators extracted from the GHSOM clustering result are applicable to all samples clustered in the same leaf node (subgroup). This principle and any pre-warning signal derived from the identified indicators can be applied to assessing the reliability of financial statements and forming a basis for further analysis in order to reach prudent decisions. The limitation of this paper is the subjective parameter setting of GHSOM. Originality/value - This is the first application of GHSOM to financial data and demonstrates an alternative way to help capital providers such as lenders to evaluate the integrity of financial statements, a basis for further analysis to reach prudent decisions. The proposed approach could be applied to other scenarios that rely on accounting numbers as a basis for decisions.
    關聯: Industrial Management and Data Systems, 112(2), 224 - 244
    資料來源: http://dx.doi.org/10.1108/02635571211204272
    数据类型: article
    DOI 連結: http://dx.doi.org/10.1108/02635571211204272
    DOI: 10.1108/02635571211204272
    显示于类别:[會計學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    224244.pdf148KbAdobe PDF973检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈