English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 95906/126496 (76%)
Visitors : 31670095      Online Users : 449
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 期刊論文 >  Item 140.119/64846
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/64846


    Title: 百慕達式利率交換選擇權
    Authors: 江彌修;王祥帆
    Contributors: 金融系
    Date: 2006-12
    Issue Date: 2014-03-24 13:51:02 (UTC+8)
    Abstract: 許多公司在發行可贖回公司債時(Callable Bond),為了規避利率變動的風險因此簽訂利率交換(IRS)契約,此外,考慮到提前贖回的可能性,更進一步承做利率交換選擇權(Swaption),在利率交換選擇權的部分,一般又會配合特定贖回時點而設計,因此可以視為百慕達式的利率交換選擇權(Bermudan Swaption)。大致而言,百慕達式利率交換選擇權(Bermudan Swaption)可以分為兩類,一類是不論履約時點為何均固定交換期間長度的選擇權,又可稱為Constant Maturity Bermudan Swaption,另一類則是固定商品到期日,即選擇權到期期間與利率交換期間相加為固定常數,換言之,越晚做提前履約的動作,則利率交換的期間也相對便短。 至於在評價部分,百慕達式或美式這些具有提前履約特性的選擇權其封閉解並不存在,因此需要利用到其他的近似解或是數值方法來幫助我們評價。由於本文採用BGM(1997)的市場利率模型(Libor Market Model),在其高維度的特性下,樹狀方法以及有限差分法並不適用,因此本文選擇使用蒙地卡羅法來幫助我們評價,同時採用Longstaff and Schwartz (2001)的最小平方蒙地卡羅法(Least Squares Monte Carlo Method)來解決傳統蒙地卡羅法無法處理提前履約的困擾。 最後,本文將利用BGM(1997)的利率模型配合Longstaff and Schwartz (2001)的方法實際評價三種商品,包含了上述兩種不同類型的百慕達式利率交換選擇權(Bermudan Swaption),再加上由中信金所發行的利率交換選擇權(Swaption),並探討歐式與百慕達式商品價格之差異。
    Relation: 集保結算所月刊, 157, 31-54
    Data Type: article
    Appears in Collections:[金融學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML670View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback