English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51068854      Online Users : 417
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 期刊論文 >  Item 140.119/66056
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/66056


    Title: Controlling the False Discovery Rate for the Sam Method
    Authors: Hsueh, Huey-Miin;Tsai, Chen-An
    Contributors: 統計系
    Keywords: Significance Analysis of Microarray;False Discovery Rate;Per-Comparisonwise Error Rate
    Date: 2006.12
    Issue Date: 2014-05-16 17:17:31 (UTC+8)
    Abstract: The Significant Analysis of Microarray (SAM) proposed by Tusher, Tibshirani and Chu (2001) is nowadays a standard statistical procedure for detecting differentially expressed genes in microarray studies. Given a threshold △ of the deviation between a t-like statistic and its empirical expectation, an estimated false discovery rate (FDR) is reported in additional to the conclusion of significance. However, the deviation between the statistic and its expectation is not easy to interpret as a conventional error measure. In practice, researchers often found the determination of the △ is quite difficult. SAM suggests to try several different △`s in the analysis and use the result which is correspondent to an adequate FDR level. In this paper, we propose a SAM-based approach, in which, instead of △, the level of per-comparisonwise error rate (PCER) is specified. The new approach involves the kernel quantile estimation method in resampling data to improve the efficiency of the sample quantiles. To control the FDR of a conclusion, the BH step-up multiple testing procedure is utilized. Simulation studies are conducted to show that the proposed approach achieves adaptive control of FDR in various settings. The proposed approach is demonstrated with a real microarray dataset.
    Relation: 中國統計學報, 44(4), 364-381
    Data Type: article
    Appears in Collections:[統計學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    364381.pdf251KbAdobe PDF21015View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback