Reference: | Abbruzzese, G., Barone, P., Bonuccelli, U., Lopiano, L., & Antonini, A. (2012). Continuous intestinal infusion of levodopa/carbidopa in advanced Parkinson`s disease: ef fi cacy, safety and patient selection. Funct Neurol, 27, 147-154.
Ahlskog, J. E., & Muenter, M. D. (2001). Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord, 16, 448-458.
Ahn, J. H., McAvoy, T., Rakhilin, S. V., Nishi, A., Greengard, P., & Nairn, A. C. (2007). Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56delta subunit. Proc Natl Acad Sci U S A, 104, 2979-2984.
Ahn, J. H., Sung, J. Y., McAvoy, T., Nishi, A., Janssens, V., Goris, J., Greengard, P., & Nairn, A. C. (2007). The B``/PR72 subunit mediates Ca2+-dependent dephosphorylation of DARPP-32 by protein phosphatase 2A. Proc Natl Acad Sci U S A, 104, 9876-9881.
Aksenova, M. V., Burbaeva, G. S., Kandror, K. V., Kapkov, D. V., & Stepanov, A. S. (1991). The decreased level of casein kinase 2 in brain cortex of schizophrenic and Alzheimer`s disease patients. FEBS Lett, 279, 55-57.
Andersson, M., Hilbertson, A., & Cenci, M. A. (1999). Striatal fosB expression is causally linked with l-DOPA-induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson`s disease. Neurobiol Dis, 6, 461-474.
Andersson, M., Konradi, C., & Cenci, M. A. (2001). cAMP response element-binding protein is required for dopamine-dependent gene expression in the intact but not the dopamine-denervated striatum. J Neurosci, 21, 9930-9943.
Andersson, M., Usiello, A., Borgkvist, A., Pozzi, L., Dominguez, C., Fienberg, A. A., Svenningsson, P., Fredholm, B. B., Borrelli, E., Greengard, P., & Fisone, G. (2005). Cannabinoid action depends on phosphorylation of dopamine- and cAMP-regulated phosphoprotein of 32 kDa at the protein kinase A site in striatal projection neurons. J Neurosci, 25, 8432-8438.
Arai, R., Karasawa, N., Geffard, M., & Nagatsu, I. (1995). L-DOPA is converted to dopamine in serotonergic fibers of the striatum of the rat: a double-labeling immunofluorescence study. Neurosci Lett, 195, 195-198.
Aubert, I., Guigoni, C., Hakansson, K., Li, Q., Dovero, S., Barthe, N., Bioulac, B. H., Gross, C. E., Fisone, G., Bloch, B., & Bezard, E. (2005). Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol, 57, 17-26.
Ayton, S., George, J. L., Adlard, P. A., Bush, A. I., Cherny, R. A., & Finkelstein, D. I. (2013). The effect of dopamine on MPTP-induced rotarod disability. Neurosci Lett, 543, 105-109.
Bao, J., Cheung, W. Y., & Wu, J. Y. (1995). Brain L-glutamate decarboxylase. Inhibition by phosphorylation and activation by dephosphorylation. J Biol Chem, 270, 6464-6467.
Bargiotas, P., & Konitsiotis, S. (2013). Levodopa-induced dyskinesias in Parkinson`s disease: emerging treatments. Neuropsychiatr Dis Treat, 9, 1605-1617.
Bateup, H. S., Santini, E., Shen, W., Birnbaum, S., Valjent, E., Surmeier, D. J., Fisone, G., Nestler, E. J., & Greengard, P. (2010). Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proc Natl Acad Sci U S A, 107, 14845-14850.
Beal, M. F., Kowall, N. W., Ellison, D. W., Mazurek, M. F., Swartz, K. J., & Martin, J. B. (1986). Replication of the neurochemical characteristics of Huntington`s disease by quinolinic acid. Nature, 321, 168-171.
Bennett, M. K., Miller, K. G., & Scheller, R. H. (1993). Casein kinase II phosphorylates the synaptic vesicle protein p65. J Neurosci, 13, 1701-1707.
Berke, J. D., Paletzki, R. F., Aronson, G. J., Hyman, S. E., & Gerfen, C. R. (1998). A complex program of striatal gene expression induced by dopaminergic stimulation. J Neurosci, 18, 5301-5310.
Bezard, E., Brotchie, J. M., & Gross, C. E. (2001). Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci, 2, 577-588.
Bibb, J. A., Chen, J., Taylor, J. R., Svenningsson, P., Nishi, A., Snyder, G. L., Yan, Z., Sagawa, Z. K., Ouimet, C. C., Nairn, A. C., Nestler, E. J., & Greengard, P. (2001). Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature, 410, 376-380.
Bibb, J. A., Snyder, G. L., Nishi, A., Yan, Z., Meijer, L., Fienberg, A. A., Tsai, L. H., Kwon, Y. T., Girault, J. A., Czernik, A. J., Huganir, R. L., Hemmings, H. C., Jr., Nairn, A. C., & Greengard, P. (1999). Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature, 402, 669-671.
Bido, S., Marti, M., & Morari, M. (2011). Amantadine attenuates levodopa-induced dyskinesia in mice and rats preventing the accompanying rise in nigral GABA levels. J Neurochem, 118, 1043-1055.
Bito, H., Deisseroth, K., & Tsien, R. W. (1996). CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell, 87, 1203-1214.
Blandini, F., & Armentero, M. T. (2012). Animal models of Parkinson`s disease. FEBS J, 279, 1156-1166.
Blanquet, P. R. (2000). Casein kinase 2 as a potentially important enzyme in the nervous system. Prog Neurobiol, 60, 211-246.
Borgkvist, A., & Fisone, G. (2007). Psychoactive drugs and regulation of the cAMP/PKA/DARPP-32 cascade in striatal medium spiny neurons. Neurosci Biobehav Rev, 31, 79-88.
Borgkvist, A., Usiello, A., Greengard, P., & Fisone, G. (2007). Activation of the cAMP/PKA/DARPP-32 signaling pathway is required for morphine psychomotor stimulation but not for morphine reward. Neuropsychopharmacology, 32, 1995-2003.
Boyce, S., Rupniak, N. M., Steventon, M. J., & Iversen, S. D. (1990). Characterisation of dyskinesias induced by L-dopa in MPTP-treated squirrel monkeys. Psychopharmacology (Berl), 102, 21-27.
Buchou, T., Vernet, M., Blond, O., Jensen, H. H., Pointu, H., Olsen, B. B., Cochet, C., Issinger, O. G., & Boldyreff, B. (2003). Disruption of the regulatory beta subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality. Mol Cell Biol, 23, 908-915.
Buddhala, C., Hsu, C. C., & Wu, J. Y. (2009). A novel mechanism for GABA synthesis and packaging into synaptic vesicles. Neurochem Int, 55, 9-12.
Carlsson, A. (1959). The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol Rev, 11, 490-493.
Carta, A. R., Frau, L., Pontis, S., Pinna, A., & Morelli, M. (2008). Direct and indirect striatal efferent pathways are differentially influenced by low and high dyskinetic drugs: behavioural and biochemical evidence. Parkinsonism Relat Disord, 14 Suppl 2, S165-168.
Carta, A. R., Pinna, A., & Morelli, M. (2006). How reliable is the behavioural evaluation of dyskinesia in animal models of Parkinson`s disease? Behav Pharmacol, 17, 393-402.
Carta, M., Carlsson, T., Kirik, D., & Bjorklund, A. (2007). Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain, 130, 1819-1833.
Castillo, M. A., Ghose, S., Tamminga, C. A., & Ulery-Reynolds, P. G. (2010). Deficits in syntaxin 1 phosphorylation in schizophrenia prefrontal cortex. Biol Psychiatry, 67, 208-216.
Ceglia, I., Flajolet, M., & Rebholz, H. (2011). Predominance of CK2alpha over CK2alpha` in the mammalian brain. Mol Cell Biochem, 356, 169-175.
Cenci, M. A. (2002). Transcription factors involved in the pathogenesis of L-DOPA-induced dyskinesia in a rat model of Parkinson`s disease. Amino Acids, 23, 105-109.
Cenci, M. A., Lee, C. S., & Bjorklund, A. (1998). L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. Eur J Neurosci, 10, 2694-2706.
Chang, C. M., & Chao, C. C. (2013). Protein kinase CK2 enhances Mcl-1 gene expression through the serum response factor-mediated pathway in the rat hippocampus. J Neurosci Res, 91, 808-817.
Chao, C. C., Chiang, C. H., Ma, Y. L., & Lee, E. H. (2006). Molecular mechanism of the neurotrophic effect of GDNF on DA neurons: role of protein kinase CK2. Neurobiol Aging, 27, 105-118.
Chao, C. C., Ma, Y. L., & Lee, E. H. (2011). Brain-derived neurotrophic factor enhances Bcl-xL expression through protein kinase casein kinase 2-activated and nuclear factor kappa B-mediated pathway in rat hippocampus. Brain Pathol, 21, 150-162.
Charriaut-Marlangue, C., Otani, S., Creuzet, C., Ben-Ari, Y., & Loeb, J. (1991). Rapid activation of hippocampal casein kinase II during long-term potentiation. Proc Natl Acad Sci U S A, 88, 10232-10236.
Chassain, C., Bielicki, G., Carcenac, C., Ronsin, A. C., Renou, J. P., Savasta, M., & Durif, F. (2013). Does MPTP intoxication in mice induce metabolite changes in the nucleus accumbens? A (1)H nuclear MRS study. NMR Biomed, 26, 336-347.
Chaudhuri, K. R., & Schapira, A. H. V. (2009). Non-motor symptoms of Parkinson`s disease: dopaminergic pathophysiology and treatment. The Lancet Neurology, 8, 464-474.
Chester, N., Yu, I. J., & Marshak, D. R. (1995). Identification and characterization of protein kinase CKII isoforms in HeLa cells. Isoform-specific differences in rates of assembly from catalytic and regulatory subunits. J Biol Chem, 270, 7501-7514.
Cohen, P. T. (2002). Protein phosphatase 1--targeted in many directions. J Cell Sci, 115, 241-256.
Da Cunha, C., Wietzikoski, E. C., Ferro, M. M., Martinez, G. R., Vital, M. A., Hipolide, D., Tufik, S., & Canteras, N. S. (2008). Hemiparkinsonian rats rotate toward the side with the weaker dopaminergic neurotransmission. Behav Brain Res, 189, 364-372.
Darmopil, S., Martin, A. B., De Diego, I. R., Ares, S., & Moratalla, R. (2009). Genetic inactivation of dopamine D1 but not D2 receptors inhibits L-DOPA-induced dyskinesia and histone activation. Biol Psychiatry, 66, 603-613.
de Jong, P. J., Lakke, J. P., & Teelken, A. W. (1984). CSF GABA levels in Parkinson`s disease. Adv Neurol, 40, 427-430.
Desagher, S., Osen-Sand, A., Montessuit, S., Magnenat, E., Vilbois, F., Hochmann, A., Journot, L., Antonsson, B., & Martinou, J. C. (2001). Phosphorylation of bid by casein kinases I and II regulates its cleavage by caspase 8. Mol Cell, 8, 601-611.
Desdouits, F., Cheetham, J. J., Huang, H. B., Kwon, Y. G., da Cruz e Silva, E. F., Denefle, P., Ehrlich, M. E., Nairn, A. C., Greengard, P., & Girault, J. A. (1995). Mechanism of inhibition of protein phosphatase 1 by DARPP-32: studies with recombinant DARPP-32 and synthetic peptides. Biochem Biophys Res Commun, 206, 652-658.
Dionisi-Vici, C., Hoffmann, G. F., Leuzzi, V., Hoffken, H., Brautigam, C., Rizzo, C., Steebergen-Spanjers, G. C., Smeitink, J. A., & Wevers, R. A. (2000). Tyrosine hydroxylase deficiency with severe clinical course: clinical and biochemical investigations and optimization of therapy. J Pediatr, 136, 560-562.
Dirkx, R., Jr., Thomas, A., Li, L., Lernmark, A., Sherwin, R. S., De Camilli, P., & Solimena, M. (1995). Targeting of the 67-kDa isoform of glutamic acid decarboxylase to intracellular organelles is mediated by its interaction with the NH2-terminal region of the 65-kDa isoform of glutamic acid decarboxylase. J Biol Chem, 270, 2241-2246.
Fan, M. M., & Raymond, L. A. (2007). N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington`s disease. Prog Neurobiol, 81, 272-293.
Fan, M. M., Zhang, H., Hayden, M. R., Pelech, S. L., & Raymond, L. A. (2008). Protective up-regulation of CK2 by mutant huntingtin in cells co-expressing NMDA receptors. J Neurochem, 104, 790-805.
Fernandez, E., Schiappa, R., Girault, J. A., & Le Novere, N. (2006). DARPP-32 is a robust integrator of dopamine and glutamate signals. PLoS Comput Biol, 2, e176.
Fienberg, A. A., Hiroi, N., Mermelstein, P. G., Song, W., Snyder, G. L., Nishi, A., Cheramy, A., O`Callaghan, J. P., Miller, D. B., Cole, D. G., Corbett, R., Haile, C. N., Cooper, D. C., Onn, S. P., Grace, A. A., Ouimet, C. C., White, F. J., Hyman, S. E., Surmeier, D. J., Girault, J., Nestler, E. J., & Greengard, P. (1998). DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science, 281, 838-842.
Freichel, C., Potschka, H., Ebert, U., Brandt, C., & Loscher, W. (2006). Acute changes in the neuronal expression of GABA and glutamate decarboxylase isoforms in the rat piriform cortex following status epilepticus. Neuroscience, 141, 2177-2194.
Friedman, A. (1985a). [Dyskinesia as a complication of the treatment of Parkinson disease with L-dopa--clinical observations]. Neurol Neurochir Pol, 19, 291-294.
Friedman, A. (1985b). Levodopa-induced dyskinesia: clinical observations. J Neurol, 232, 29-31.
Gerfen, C. R., Engber, T. M., Mahan, L. C., Susel, Z., Chase, T. N., Monsma, F. J., Jr., & Sibley, D. R. (1990). D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science, 250, 1429-1432.
Gerfen, C. R., Miyachi, S., Paletzki, R., & Brown, P. (2002). D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J Neurosci, 22, 5042-5054.
Girault, J. A., Hemmings, H. C., Jr., Williams, K. R., Nairn, A. C., & Greengard, P. (1989). Phosphorylation of DARPP-32, a dopamine- and cAMP-regulated phosphoprotein, by casein kinase II. J Biol Chem, 264, 21748-21759.
Girault, J. A., Hemmings, H. C., Jr., Zorn, S. H., Gustafson, E. L., & Greengard, P. (1990). Characterization in mammalian brain of a DARPP-32 serine kinase identical to casein kinase II. J Neurochem, 55, 1772-1783.
Gomez-Mancilla, B., & Bedard, P. J. (1993). Effect of nondopaminergic drugs on L-dopa-induced dyskinesias in MPTP-treated monkeys. Clin Neuropharmacol, 16, 418-427.
Gourfinkel-An, I., Parain, K., Hartmann, A., Mangiarini, L., Brice, A., Bates, G., & Hirsch, E. C. (2003). Changes in GAD67 mRNA expression evidenced by in situ hybridization in the brain of R6/2 transgenic mice. J Neurochem, 86, 1369-1378.
Graybiel, A. M. (2000). The basal ganglia. Curr Biol, 10, R509-511.
Greengard, P. (2001). The neurobiology of dopamine signaling. Biosci Rep, 21, 247-269.
Greengard, P., Allen, P. B., & Nairn, A. C. (1999). Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron, 23, 435-447.
Guerra, M. J., Liste, I., & Labandeira-Garcia, J. L. (1997). Effects of lesions of the nigrostriatal pathway and of nigral grafts on striatal serotonergic innervation in adult rats. Neuroreport, 8, 3485-3488.
Haavik, J., & Toska, K. (1998). Tyrosine hydroxylase and Parkinson`s disease. Mol Neurobiol, 16, 285-309.
Hardingham, G. E., Fukunaga, Y., & Bading, H. (2002). Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci, 5, 405-414.
Harper, P. S. (1999). Huntington`s disease: a clinical, genetic and molecular model for polyglutamine repeat disorders. Philos Trans R Soc Lond B Biol Sci, 354, 957-961.
Hemmings, H. C., Jr., Greengard, P., Tung, H. Y., & Cohen, P. (1984). DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature, 310, 503-505.
Hemmings, H. C., Jr., Nairn, A. C., & Greengard, P. (1984). DARPP-32, a dopamine- and adenosine 3`:5`-monophosphate-regulated neuronal phosphoprotein. II. Comparison of the kinetics of phosphorylation of DARPP-32 and phosphatase inhibitor 1. J Biol Chem, 259, 14491-14497.
Hemmings, H. C., Jr., Williams, K. R., Konigsberg, W. H., & Greengard, P. (1984). DARPP-32, a dopamine- and adenosine 3`:5`-monophosphate-regulated neuronal phosphoprotein. I. Amino acid sequence around the phosphorylated threonine. J Biol Chem, 259, 14486-14490.
Hickey, M. A., Kosmalska, A., Enayati, J., Cohen, R., Zeitlin, S., Levine, M. S., & Chesselet, M. F. (2008). Extensive early motor and non-motor behavioral deficits are followed by striatal neuronal loss in knock-in Huntington`s disease mice. Neuroscience, 157, 280-295.
Hsu, C. C., Thomas, C., Chen, W., Davis, K. M., Foos, T., Chen, J. L., Wu, E., Floor, E., Schloss, J. V., & Wu, J. Y. (1999). Role of synaptic vesicle proton gradient and protein phosphorylation on ATP-mediated activation of membrane-associated brain glutamate decarboxylase. J Biol Chem, 274, 24366-24371.
Ingham, C. A., Hood, S. H., & Arbuthnott, G. W. (1989). Spine density on neostriatal neurones changes with 6-hydroxydopamine lesions and with age. Brain Res, 503, 334-338.
Kemp, J. M., & Powell, T. P. (1971). The site of termination of afferent fibres in the caudate nucleus. Philos Trans R Soc Lond B Biol Sci, 262, 413-427.
Kim, H. R., Kim, K., Lee, K. H., Kim, S. J., & Kim, J. (2008). Inhibition of casein kinase 2 enhances the death ligand- and natural kiler cell-induced hepatocellular carcinoma cell death. Clin Exp Immunol, 152, 336-344.
Konradi, C., Westin, J. E., Carta, M., Eaton, M. E., Kuter, K., Dekundy, A., Lundblad, M., & Cenci, M. A. (2004). Transcriptome analysis in a rat model of L-DOPA-induced dyskinesia. Neurobiol Dis, 17, 219-236.
Korchounov, A., Meyer, M. F., & Krasnianski, M. (2010). Postsynaptic nigrostriatal dopamine receptors and their role in movement regulation. J Neural Transm, 117, 1359-1369.
Kosel, M., Rudolph, U., Wielepp, P., Luginbuhl, M., Schmitt, W., Fisch, H. U., & Schlaepfer, T. E. (2004). Diminished GABA(A) receptor-binding capacity and a DNA base substitution in a patient with treatment-resistant depression and anxiety. Neuropsychopharmacology, 29, 347-350.
Koshibu, K., Graff, J., Beullens, M., Heitz, F. D., Berchtold, D., Russig, H., Farinelli, M., Bollen, M., & Mansuy, I. M. (2009). Protein phosphatase 1 regulates the histone code for long-term memory. J Neurosci, 29, 13079-13089.
Kwon, Y. G., Huang, H. B., Desdouits, F., Girault, J. A., Greengard, P., & Nairn, A. C. (1997). Characterization of the interaction between DARPP-32 and protein phosphatase 1 (PP-1): DARPP-32 peptides antagonize the interaction of PP-1 with binding proteins. Proc Natl Acad Sci U S A, 94, 3536-3541.
Langston, J. W., Ballard, P., Tetrud, J. W., & Irwin, I. (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219, 979-980.
Langston, J. W., Quik, M., Petzinger, G., Jakowec, M., & Di Monte, D. A. (2000). Investigating levodopa-induced dyskinesias in the parkinsonian primate. Ann Neurol, 47, S79-89.
Lee, C. S., Cenci, M. A., Schulzer, M., & Bjorklund, A. (2000). Embryonic ventral mesencephalic grafts improve levodopa-induced dyskinesia in a rat model of Parkinson`s disease. Brain, 123 ( Pt 7), 1365-1379.
Lee, H. R., Park, S. Y., Kim, H. Y., Shin, H. K., Lee, W. S., Rhim, B. Y., Hong, K. W., & Kim, C. D. (2012). Protection by cilostazol against amyloid-beta(1-40)-induced suppression of viability and neurite elongation through activation of CK2alpha in HT22 mouse hippocampal cells. J Neurosci Res, 90, 1566-1576.
Lindskog, M., Svenningsson, P., Pozzi, L., Kim, Y., Fienberg, A. A., Bibb, J. A., Fredholm, B. B., Nairn, A. C., Greengard, P., & Fisone, G. (2002). Involvement of DARPP-32 phosphorylation in the stimulant action of caffeine. Nature, 418, 774-778.
Liu, F. C., & Graybiel, A. M. (1996). Spatiotemporal dynamics of CREB phosphorylation: transient versus sustained phosphorylation in the developing striatum. Neuron, 17, 1133-1144.
Lloyd, K. G., Bossi, L., Morselli, P. L., Munari, C., Rougier, M., & Loiseau, H. (1986). Alterations of GABA-mediated synaptic transmission in human epilepsy. Adv Neurol, 44, 1033-1044.
Lonze, B. E., & Ginty, D. D. (2002). Function and regulation of CREB family transcription factors in the nervous system. Neuron, 35, 605-623.
Lopez-Huerta, V. G., Carrillo-Reid, L., Galarraga, E., Tapia, D., Fiordelisio, T., Drucker-Colin, R., & Bargas, J. (2013). The balance of striatal feedback transmission is disrupted in a model of parkinsonism. J Neurosci, 33, 4964-4975.
Loschmann, P. A., Smith, L. A., Lange, K. W., Jahnig, P., Jenner, P., & Marsden, C. D. (1992). Motor activity following the administration of selective D-1 and D-2 dopaminergic drugs to MPTP-treated common marmosets. Psychopharmacology (Berl), 109, 49-56.
Lou, D. Y., Dominguez, I., Toselli, P., Landesman-Bollag, E., O`Brien, C., & Seldin, D. C. (2008). The alpha catalytic subunit of protein kinase CK2 is required for mouse embryonic development. Mol Cell Biol, 28, 131-139.
Maeda, T., Nagata, K., Yoshida, Y., & Kannari, K. (2005). Serotonergic hyperinnervation into the dopaminergic denervated striatum compensates for dopamine conversion from exogenously administered l-DOPA. Brain Res, 1046, 230-233.
Meggio, F., & Pinna, L. A. (2003). One-thousand-and-one substrates of protein kinase CK2? FASEB J, 17, 349-368.
Milnerwood, A. J., Gladding, C. M., Pouladi, M. A., Kaufman, A. M., Hines, R. M., Boyd, J. D., Ko, R. W., Vasuta, O. C., Graham, R. K., Hayden, M. R., Murphy, T. H., & Raymond, L. A. (2010). Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington`s disease mice. Neuron, 65, 178-190.
Murnion, M. E., Adams, R. R., Callister, D. M., Allis, C. D., Earnshaw, W. C., & Swedlow, J. R. (2001). Chromatin-associated protein phosphatase 1 regulates aurora-B and histone H3 phosphorylation. J Biol Chem, 276, 26656-26665.
Muschamp, J. W., & Carlezon, W. A., Jr. (2013). Roles of nucleus accumbens CREB and dynorphin in dysregulation of motivation. Cold Spring Harb Perspect Med, 3, a012005.
Nakajo, S., Hagiwara, T., Nakaya, K., & Nakamura, Y. (1986). Tissue distribution of casein kinases. Biochem Int, 13, 701-707.
Nakashima, A., Ota, A., Kaneko, Y. S., Mori, K., Nagasaki, H., & Nagatsu, T. (2013). A possible pathophysiological role of tyrosine hydroxylase in Parkinson`s disease suggested by postmortem brain biochemistry: a contribution for the special 70th birthday symposium in honor of Prof. Peter Riederer. J Neural Transm, 120, 49-54.
Nestler, E. J. (2004). Molecular mechanisms of drug addiction. Neuropharmacology, 47 Suppl 1, 24-32.
Nishi, A., Bibb, J. A., Snyder, G. L., Higashi, H., Nairn, A. C., & Greengard, P. (2000). Amplification of dopaminergic signaling by a positive feedback loop. Proc Natl Acad Sci U S A, 97, 12840-12845.
Nishi, A., Snyder, G. L., & Greengard, P. (1997). Bidirectional regulation of DARPP-32 phosphorylation by dopamine. J Neurosci, 17, 8147-8155.
Nishi, A., Snyder, G. L., Nairn, A. C., & Greengard, P. (1999). Role of calcineurin and protein phosphatase-2A in the regulation of DARPP-32 dephosphorylation in neostriatal neurons. J Neurochem, 72, 2015-2021.
Nutt, J. G. (2000). Clinical pharmacology of levodopa-induced dyskinesia. Ann Neurol, 47, S160-164; discussion S164-166.
Obeso, J. A., Olanow, C. W., & Nutt, J. G. (2000). Levodopa motor complications in Parkinson`s disease. Trends Neurosci, 23, S2-7.
Obeso JA, R.-O. M., Rodriguez M, Macias R, Alvarez L, Guridi J, Vitek J, DeLong MR. (2000). Pathophysiologic basis of surgery for Parkinson`s disease. Neurology.
Oertel, W. H., & Quinn, N. P. (1997). Parkinson`s disease: drug therapy. Baillieres Clin Neurol, 6, 89-108.
Olanow, C. W., Gauger, L. L., & Cedarbaum, J. M. (1991). Temporal relationships between plasma and cerebrospinal fluid pharmacokinetics of levodopa and clinical effect in Parkinson`s disease. Ann Neurol, 29, 556-559.
Pavon, N., Martin, A. B., Mendialdua, A., & Moratalla, R. (2006). ERK phosphorylation and FosB expression are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Biol Psychiatry, 59, 64-74.
Pearce, R. K., Banerji, T., Jenner, P., & Marsden, C. D. (1998). De novo administration of ropinirole and bromocriptine induces less dyskinesia than L-dopa in the MPTP-treated marmoset. Mov Disord, 13, 234-241.
Picconi, B., Centonze, D., Hakansson, K., Bernardi, G., Greengard, P., Fisone, G., Cenci, M. A., & Calabresi, P. (2003). Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nat Neurosci, 6, 501-506.
Rascol, O., Brooks, D. J., Korczyn, A. D., De Deyn, P. P., Clarke, C. E., & Lang, A. E. (2000). A five-year study of the incidence of dyskinesia in patients with early Parkinson`s disease who were treated with ropinirole or levodopa. 056 Study Group. N Engl J Med, 342, 1484-1491.
Rebholz, H., Zhou, M., Nairn, A. C., Greengard, P., & Flajolet, M. (2013). Selective knockout of the casein kinase 2 in d1 medium spiny neurons controls dopaminergic function. Biol Psychiatry, 74, 113-121.
Reis, H. J., Rosa, D. V., Guimaraes, M. M., Souza, B. R., Barros, A. G., Pimenta, F. J., Souza, R. P., Torres, K. C., & Romano-Silva, M. A. (2007). Is DARPP-32 a potential therapeutic target? Expert Opin Ther Targets, 11, 1649-1661.
Robinson, P. J., Liu, J. P., Powell, K. A., Fykse, E. M., & Sudhof, T. C. (1994). Phosphorylation of dynamin I and synaptic-vesicle recycling. Trends Neurosci, 17, 348-353.
Robinson, T. E., & Becker, J. B. (1983). The rotational behavior model: asymmetry in the effects of unilateral 6-OHDA lesions of the substantia nigra in rats. Brain Res, 264, 127-131.
Rozas, G., Lopez-Martin, E., Guerra, M. J., & Labandeira-Garcia, J. L. (1998). The overall rod performance test in the MPTP-treated-mouse model of Parkinsonism. J Neurosci Methods, 83, 165-175.
Sala, C., Rudolph-Correia, S., & Sheng, M. (2000). Developmentally regulated NMDA receptor-dependent dephosphorylation of cAMP response element-binding protein (CREB) in hippocampal neurons. J Neurosci, 20, 3529-3536.
Sano, H., Chiken, S., Hikida, T., Kobayashi, K., & Nambu, A. (2013). Signals through the striatopallidal indirect pathway stop movements by phasic excitation in the substantia nigra. J Neurosci, 33, 7583-7594.
Sano, H., Yasoshima, Y., Matsushita, N., Kaneko, T., Kohno, K., Pastan, I., & Kobayashi, K. (2003). Conditional ablation of striatal neuronal types containing dopamine D2 receptor disturbs coordination of basal ganglia function. J Neurosci, 23, 9078-9088.
Santini, E. (2009). Molecular Basis of L-DOPA-induced Dyskinesia: Studies on Striatal Signaling: Karolinska institutet.
Santini, E., Sgambato-Faure, V., Li, Q., Savasta, M., Dovero, S., Fisone, G., & Bezard, E. (2010). Distinct changes in cAMP and extracellular signal-regulated protein kinase signalling in L-DOPA-induced dyskinesia. PLoS One, 5, e12322.
Santini, E., Valjent, E., Usiello, A., Carta, M., Borgkvist, A., Girault, J. A., Herve, D., Greengard, P., & Fisone, G. (2007). Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. J Neurosci, 27, 6995-7005.
Schneider, J. S. (1989). Levodopa-induced dyskinesias in parkinsonian monkeys: relationship to extent of nigrostriatal damage. Pharmacol Biochem Behav, 34, 193-196.
Schrag, A., & Quinn, N. (2000). Dyskinesias and motor fluctuations in Parkinson`s disease. A community-based study. Brain, 123 ( Pt 11), 2297-2305.
Sgambato-Faure, V., Buggia, V., Gilbert, F., Levesque, D., Benabid, A. L., & Berger, F. (2005). Coordinated and spatial upregulation of arc in striatonigral neurons correlates with L-dopa-induced behavioral sensitization in dyskinetic rats. J Neuropathol Exp Neurol, 64, 936-947.
Sheikh, S. N., & Martin, D. L. (1998). Elevation of brain GABA levels with vigabatrin (gamma-vinylGABA) differentially affects GAD65 and GAD67 expression in various regions of rat brain. J Neurosci Res, 52, 736-741.
Sirinathsinghji, D. J., Kupsch, A., Mayer, E., Zivin, M., Pufal, D., & Oertel, W. H. (1992). Cellular localization of tyrosine hydroxylase mRNA and cholecystokinin mRNA-containing cells in the ventral mesencephalon of the common marmoset: effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Brain Res Mol Brain Res, 12, 267-274.
Smith, Y., & Villalba, R. (2008). Striatal and extrastriatal dopamine in the basal ganglia: an overview of its anatomical organization in normal and Parkinsonian brains. Mov Disord, 23 Suppl 3, S534-547.
Spokes, E. G., Garrett, N. J., Rossor, M. N., & Iversen, L. L. (1980). Distribution of GABA in post-mortem brain tissue from control, psychotic and Huntington`s chorea subjects. J Neurol Sci, 48, 303-313.
Stephens, B., Mueller, A. J., Shering, A. F., Hood, S. H., Taggart, P., Arbuthnott, G. W., Bell, J. E., Kilford, L., Kingsbury, A. E., Daniel, S. E., & Ingham, C. A. (2005). Evidence of a breakdown of corticostriatal connections in Parkinson`s disease. Neuroscience, 132, 741-754.
Stipanovich, A., Valjent, E., Matamales, M., Nishi, A., Ahn, J. H., Maroteaux, M., Bertran-Gonzalez, J., Brami-Cherrier, K., Enslen, H., Corbille, A. G., Filhol, O., Nairn, A. C., Greengard, P., Herve, D., & Girault, J. A. (2008). A phosphatase cascade by which rewarding stimuli control nucleosomal response. Nature, 453, 879-884.
Sudhof, T. C. (1995). The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature, 375, 645-653.
Svenningsson, P., Nishi, A., Fisone, G., Girault, J. A., Nairn, A. C., & Greengard, P. (2004). DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol, 44, 269-296.
Svenningsson, P., Tzavara, E. T., Carruthers, R., Rachleff, I., Wattler, S., Nehls, M., McKinzie, D. L., Fienberg, A. A., Nomikos, G. G., & Greengard, P. (2003). Diverse psychotomimetics act through a common signaling pathway. Science, 302, 1412-1415.
Tanaka, H., Kannari, K., Maeda, T., Tomiyama, M., Suda, T., & Matsunaga, M. (1999). Role of serotonergic neurons in L-DOPA-derived extracellular dopamine in the striatum of 6-OHDA-lesioned rats. Neuroreport, 10, 631-634.
Treisman, R. (1996). Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol, 8, 205-215.
Valjent, E., Pascoli, V., Svenningsson, P., Paul, S., Enslen, H., Corvol, J. C., Stipanovich, A., Caboche, J., Lombroso, P. J., Nairn, A. C., Greengard, P., Herve, D., & Girault, J. A. (2005). Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc Natl Acad Sci U S A, 102, 491-496.
Varastet, M., Riche, D., Maziere, M., & Hantraye, P. (1994). Chronic MPTP treatment reproduces in baboons the differential vulnerability of mesencephalic dopaminergic neurons observed in Parkinson`s disease. Neuroscience, 63, 47-56.
Villalba, R. M., Lee, H., & Smith, Y. (2009). Dopaminergic denervation and spine loss in the striatum of MPTP-treated monkeys. Exp Neurol, 215, 220-227.
Villalba, R. M., & Smith, Y. (2010). Striatal spine plasticity in Parkinson`s Disease. Frontiers in Neuroanatomy, 4.
Walaas, S. I., Aswad, D. W., & Greengard, P. (1983). A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. Nature, 301, 69-71.
Walaas, S. I., & Greengard, P. (1984). DARPP-32, a dopamine- and adenosine 3`:5`-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. I. Regional and cellular distribution in the rat brain. J Neurosci, 4, 84-98.
Wei, J., Davis, K. M., Wu, H., & Wu, J. Y. (2004). Protein phosphorylation of human brain glutamic acid decarboxylase (GAD)65 and GAD67 and its physiological implications. Biochemistry, 43, 6182-6189.
Westin, J. E., Vercammen, L., Strome, E. M., Konradi, C., & Cenci, M. A. (2007). Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of L-DOPA-induced dyskinesia and the role of dopamine D1 receptors. Biol Psychiatry, 62, 800-810.
Winkler, C., Kirik, D., Bjorklund, A., & Cenci, M. A. (2002). L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of parkinson`s disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis, 10, 165-186.
Wong, C. G., Bottiglieri, T., & Snead, O. C., 3rd. (2003). GABA, gamma-hydroxybutyric acid, and neurological disease. Ann Neurol, 54 Suppl 6, S3-12.
Zachariou, V., Sgambato-Faure, V., Sasaki, T., Svenningsson, P., Berton, O., Fienberg, A. A., Nairn, A. C., Greengard, P., & Nestler, E. J. (2006). Phosphorylation of DARPP-32 at Threonine-34 is required for cocaine action. Neuropsychopharmacology, 31, 555-562.
Zaja-Milatovic, S., Milatovic, D., Schantz, A. M., Zhang, J., Montine, K. S., Samii, A., Deutch, A. Y., & Montine, T. J. (2005). Dendritic degeneration in neostriatal medium spiny neurons in Parkinson disease. Neurology, 64, 545-547.
Zesiewicz, T. A., Sullivan, K. L., Arnulf, I., Chaudhuri, K. R., Morgan, J. C., Gronseth, G. S., Miyasaki, J., Iverson, D. J., Weiner, W. J., & Quality Standards Subcommittee of the American Academy of, N. (2010). Practice Parameter: treatment of nonmotor symptoms of Parkinson disease: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 74, 924-931.
Zhang, T. Y., Hellstrom, I. C., Bagot, R. C., Wen, X., Diorio, J., & Meaney, M. J. (2010). Maternal care and DNA methylation of a glutamic acid decarboxylase 1 promoter in rat hippocampus. J Neurosci, 30, 13130-13137.
Zhang, Y., Svenningsson, P., Picetti, R., Schlussman, S. D., Nairn, A. C., Ho, A., Greengard, P., & Kreek, M. J. (2006). Cocaine self-administration in mice is inversely related to phosphorylation at Thr34 (protein kinase A site) and Ser130 (kinase CK1 site) of DARPP-32. J Neurosci, 26, 2645-2651. |