English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 94986/125531 (76%)
Visitors : 30920833      Online Users : 497
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/66692

    Title: On Mean Shift Clustering for Directional Data on a Hypersphere
    Authors: 郭訓志
    Yang, Miin-Shen;Chang-Chien, Shou-Jen;Kuo, Hsun-Chih
    Contributors: 統計系
    Keywords: Clustering;Mean shift;Directional data on a hypersphere
    Date: 2014.04
    Issue Date: 2014-06-13 14:26:05 (UTC+8)
    Abstract: The mean shift clustering algorithm is a useful tool for clustering numeric data. Recently, Chang-Chien et al. [1] proposed a mean shift clustering algorithm for circular data that are directional data on a plane. In this paper, we extend the mean shift clustering for directional data on a hypersphere.The three types of mean shift procedures are considered. With the proposed mean shift clustering for the data on a hypersphere it is not necessary to give the number of clusters since it can automatically find a final cluster number with good clustering centers. Several numerical examples are used to demonstrate its effectiveness and superiority of the proposed method.
    Relation: Artificial Intelligence and Soft Computing Lecture Notes in Computer Science, 8468, 809-818
    Data Type: book/chapter
    DOI 連結: http://dx.doi.org/10.1007/978-3-319-07176-3_70
    DOI: 10.1007/978-3-319-07176-3_70
    Appears in Collections:[統計學系] 專書/專書篇章

    Files in This Item:

    File SizeFormat
    809-810.pdf239KbAdobe PDF746View/Open

    All items in 政大典藏 are protected by copyright, with all rights reserved.

    社群 sharing

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback