English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 110116/141062 (78%)
Visitors : 46460771      Online Users : 823
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/70096


    Title: RARbeta isoform-specific regulation of DARPP-32 gene expression: An ectopic expression study in the developing telencephalon
    Authors: 廖文霖
    Liao, Wen-Lin;Liu, Fu-Chin
    Contributors: 神科所
    Keywords: dopamine;retinoic acid;RXR;striatum
    Date: 2005.01
    Issue Date: 2014-09-23 12:27:02 (UTC+8)
    Abstract: Dopamine and adenosine 3`:5`-monophosphate-regulated phosphoprotein (DARPP-32) is a key molecule for dopamine neurotransmission. The molecular mechanisms underlying the regulation of DARPP-32 in the developing brain remains elusive. Previous studies have shown that retinoids are capable of inducing DARPP-32 in striatal cell culture, suggesting that retinoids are candidate molecules for controlling DARPP-32 expression. In the present study, we first studied the expression profiles of retinoid receptors and their associated co-factors in the developing rat telencephalon by RT-PCR. The results showed that among the retinoid receptors, RARbeta and RXRgamma were nearly selectively expressed in the developing striatum. By contrast, the retinoid receptors associated transcriptional co-factors, including the co-repressors of N-CoR and SMRT, and the co-activators of SRC-1 and P/CAF, were ubiquitously expressed in the developing telencephalon. In light of the previous findings that DARPP-32 was inducible by retinoids in striatal culture, but not in cortical culture, we hypothesized that the striatum-selective RARbeta and RXRgamma may mediate DARPP-32 induction by retinoids. To test this hypothesis, we used the gain-of-function approach to ectopically express RARbeta and RXRgamma in the developing cerebral cortex that lacked these two retinoid receptors. Ectopic expression of RARbeta1, but not RXRgamma1, up-regulated DARPP-32 in the cortical explant culture. Notably, DARPP-32 was up-regulated only by the RARbeta1 isoform, but not by other RARbeta isoforms. Our study suggests that RARbeta signaling may regulate DARPP-32 gene expression by an isoform-specific mechanism in developing telencephalic neurons. The molecular diversity of RARbeta isoforms may underlie parts of the complex gene regulation by retinoids during neural development.
    Relation: European Journal of Neuroscience,21(12),3262-3268
    Data Type: article
    Appears in Collections:[神經科學研究所 ] 期刊論文

    Files in This Item:

    File Description SizeFormat
    3262.pdf331KbAdobe PDF21117View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback