English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 93932/124380 (76%)
Visitors : 29009418      Online Users : 480
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://nccur.lib.nccu.edu.tw/handle/140.119/71760


    Title: 以模擬量子退火過程探索自旋系統的基態
    Approaching ground states of spin systems via simulated quantum annealing
    Authors: 黃湘喻
    Huang, Hsiang Yu
    Contributors: 林瑜琤
    Lin, Yu Cheng
    黃湘喻
    Huang, Hsiang Yu
    Keywords: D-Wave 計算機
    量子退火
    模擬退火
    Kibble-Zurek 機制
    D-Wave device
    quantum annealing
    simulated annealing
    Kibble-Zurek mechanism
    Date: 2014
    Issue Date: 2014-12-01 14:27:31 (UTC+8)
    Abstract: 專為解決最佳化問題設計的程式化量子退火計算機 ---D-Wave 系統 --- 已於近年問世。為瞭解 D-Wave 退火過程的性質,許多研究團隊進行各類型的測試,試圖將 D-Wave 計算機運算效能與其它古典及量子模擬退火演算法作比較。本論文利用量子蒙地卡羅(quantum Monte Carlo) 計算模擬橫場下的易辛模型,並探討藉降低橫場(量子擾動)逼近量子臨界點的退火動力學之標度行為。我們的結果顯示,隨模擬時間進行退火的動力過程並不反應真實的量子動力現象。我們因此建議,比較量子退火與古典退火的計算測試待需更嚴謹的實驗設計。
    Recently, a programmable quantum annealing device, the D-Wave system, has been built that attempts to solve optimization problems by adiabatically quenching quantum fluctuations. In order to get insights into the nature of the D-Wave annealing process, different research teams have performed several tests of the D-Wave and compared its performance to other classical and quantum simulated annealing algorithms. In this thesis we use quantum Monte Carlo method to simulate quantum annealing in the transverse-field Ising model, and study scaling aspects of the quantum phase transition approached by changing the transverse field as a function of simulation time. We find that quenching quantum fluctuations in simulation time does not access the true quantum dynamics. Our results therefore show a careful design of benchmark tests is needed for comparing a quantum annealer to a simulated classical annealer.
    Reference: [1] G. E. Santoro, R. Martonak, E. Tosatti, and R. Car, Science 295, 2427 (2002).
    [2] R. Martonak, G. E. Santoro, and E. Tosatti, Phys. Rev. B 66, 094203 (2002).
    [3] S. Kirkpatrick et al., science 220, 671 (1983).
    [4] T. W. Kibble, Physics Reports 67, 183 (1980).
    [5] W. Zurek, Nature 317, 505 (1985).
    [6] A. Polkovnikov, Phys. Rev. B 72, 161201 (2005).
    [7] C.-W. Liu, A. Polkovnikov, and A. W. Sandvik, Phys. Rev. B 89, 054307 (2014).
    [8] B. Friedrich and D. Herschbach, Physics Today 56, 53 (2003).
    [9] D. S. Fisher and D. A. Huse, Phys. Rev. Lett. 56, 1601 (1986).
    [10] D. S. Fisher and D. A. Huse, Phys. Rev. B 38, 386 (1988).
    [11] G. Parisi, Phys. Rev. Lett. 43, 1754 (1979).
    [12] G. Parisi, Phys. Rev. Lett. 50, 1946 (1983).
    [13] M. Mezard, G. Parisi, N. Sourlas, G. Toulouse, and M. Virasoro, Phys. Rev. Lett. 52, 1156 (1984).
    [14] D. Bitko, T. F. Rosenbaum, and G. Aeppli, Phys. Rev. Lett. 77, 940 (1996).
    [15] A. Messiah, Quantum Mechanics, Volume II, Wiley, New York, 1976.
    [16] E. Farhi et al., Science 292, 472 (2001).
    [17] J. G. Andrew M. Childs, Edward Farhi and S. Gutmann, Quantum Information and Computation 2, 181 (2002).
    [18] T. Kadowaki and H. Nishimori, Phys. Rev. E 58, 5355 (1998).
    [19] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).
    [20] G. E. Santoro and E. Tosatti, Journal of Physics A: Mathematical and General 39, R393 (2006).
    [21] S. Boixo et al., Nature Physics 10, 218 (2014).
    [22] V. Bapst and G. Semerjian, Journal of Physics: Conference Series 473, 012011 (2013).
    [23] R. J. Baxter, Exactly solved models in statistical mechanics, Courier Dover Publications, 2007.
    [24] J. Cardy, Scaling and renormalization in statistical physics, volume 5, Cambridge University Press, 1996.
    [25] S. Sachdev, Quantum phase transitions, Wiley Online Library, 2007.
    [26] R. P. Feynman, Reviews of Modern Physics 20, 367 (1948).
    [27] T. W. Kibble, Journal of Physics A: Mathematical and General 9, 1387 (1976).
    [28] W. H. Zurek, Physics Reports 276, 177 (1996).
    [29] J. Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005).
    [30] W. H. Zurek, U. Dorner, and P. Zoller, Phys. Rev. Lett. 95, 105701 (2005).
    [31] H. F. Trotter, Proc. Am. Math. Soc. 10, 545 (1959).
    [32] M. Suzuki, Prog. Theor. Phys. 56, 1454 (1976).
    [33] T. F. Rønnow et al., Science 345, 420 (2014).
    [34] R. H. Swendsen and J.-S. Wang, Physical review letters 58, 86 (1987).
    Description: 碩士
    國立政治大學
    應用物理研究所
    101755005
    103
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0101755005
    Data Type: thesis
    Appears in Collections:[應用物理研究所 ] 學位論文

    Files in This Item:

    File Description SizeFormat
    500501a.pdf1431KbAdobe PDF518View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback